Numerical simulation of the temperature field dynamics in single-crystalline silicon at repetitively-pulsed high-intensity ion implantation and energy impact of beam on the surface

A. Ivanova, G. Bleykher, D. Vakhrushev, O. Korneva
{"title":"Numerical simulation of the temperature field dynamics in single-crystalline silicon at repetitively-pulsed high-intensity ion implantation and energy impact of beam on the surface","authors":"A. Ivanova, G. Bleykher, D. Vakhrushev, O. Korneva","doi":"10.17223/00213411/65/11/65","DOIUrl":null,"url":null,"abstract":"Methods to modify surface and near-surface layers of materials and coatings by ion beams are used in many fields of science and technology. The method of high-intensity implantation by high-power density ion beams with submillisecond duration involves significant pulsed heating of the irradiated target’s near-surface layer, followed by its rapid cooling due to heat transfer into the material due to thermal conductivity and the implementation of repetitively-pulsed radiation-enhanced diffusion of atoms to depths exceeding the projective ion range. Using the numerical simulation, this work studies the dynamics of changes in temperature fields into silicon wafer under single-pulse and repetitively-pulsed exposure to submillisecond titanium ion beam with a pulsed power density in the range up to 109 W/m2. The conditions are determined under which the temperature in the ion-doped layer will correspond to the conditions of radiation-stimulated diffusion of the implanted element, and the temperature in the matrix material will not deteriorate its microstructure and properties.","PeriodicalId":14647,"journal":{"name":"Izvestiya vysshikh uchebnykh zavedenii. Fizika","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya vysshikh uchebnykh zavedenii. Fizika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/00213411/65/11/65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Methods to modify surface and near-surface layers of materials and coatings by ion beams are used in many fields of science and technology. The method of high-intensity implantation by high-power density ion beams with submillisecond duration involves significant pulsed heating of the irradiated target’s near-surface layer, followed by its rapid cooling due to heat transfer into the material due to thermal conductivity and the implementation of repetitively-pulsed radiation-enhanced diffusion of atoms to depths exceeding the projective ion range. Using the numerical simulation, this work studies the dynamics of changes in temperature fields into silicon wafer under single-pulse and repetitively-pulsed exposure to submillisecond titanium ion beam with a pulsed power density in the range up to 109 W/m2. The conditions are determined under which the temperature in the ion-doped layer will correspond to the conditions of radiation-stimulated diffusion of the implanted element, and the temperature in the matrix material will not deteriorate its microstructure and properties.
单晶硅重复脉冲高强度离子注入温度场动力学及束流对表面能量冲击的数值模拟
利用离子束修饰材料和涂层的表面和近表面的方法被应用于许多科学技术领域。持续时间为亚毫秒的高功率密度离子束的高强度注入方法包括对被照射目标的近表层进行显著的脉冲加热,然后由于热传导性而将热量传递到材料中,从而使其快速冷却,并实现重复脉冲辐射增强原子扩散到超过投射离子范围的深度。本文采用数值模拟的方法,研究了在脉冲功率密度高达109 W/m2的亚毫秒级钛离子束单脉冲和重复脉冲照射下硅片温度场的动态变化。确定了离子掺杂层的温度与注入元素的辐射激发扩散条件相对应的条件,并且确定了基体材料的温度不会使其微结构和性能恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信