Vine copula-based Bayesian classification for multivariate time series of electroencephalography eye states

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chunfang Zhang, C. Czado
{"title":"Vine copula-based Bayesian classification for multivariate time series of electroencephalography eye states","authors":"Chunfang Zhang, C. Czado","doi":"10.1093/jrsssc/qlad038","DOIUrl":null,"url":null,"abstract":"\n Sometimes classification tasks have to be based on multivariate time series data collected for each class. In these situations the data for each class might exhibit non-stationary behaviour together with complex dependence structures. We propose a vine copula-based approach to capture these features in each class before applying a Bayesian classifier. Vine copulas have been very successful in modelling asymmetric tail dependence among variables and are coupled with non-stationary univariate time series to model the multivariate time series data for each class. We illustrate this classification approach using data from a neural activity experiment using electroencephalography, where we want to classify the eye state. The level of neural activity was collected over time for multiple locations on the scalp. Our approach is able to identify relevant locations and allows for a model-based interpretation of the data generating process. A cross-validation study with comparison to competitor classifiers for this data set shows good performance of the proposed classifier.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad038","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sometimes classification tasks have to be based on multivariate time series data collected for each class. In these situations the data for each class might exhibit non-stationary behaviour together with complex dependence structures. We propose a vine copula-based approach to capture these features in each class before applying a Bayesian classifier. Vine copulas have been very successful in modelling asymmetric tail dependence among variables and are coupled with non-stationary univariate time series to model the multivariate time series data for each class. We illustrate this classification approach using data from a neural activity experiment using electroencephalography, where we want to classify the eye state. The level of neural activity was collected over time for multiple locations on the scalp. Our approach is able to identify relevant locations and allows for a model-based interpretation of the data generating process. A cross-validation study with comparison to competitor classifiers for this data set shows good performance of the proposed classifier.
基于藤的多变量脑电图眼状态时间序列贝叶斯分类
有时,分类任务必须基于为每个类收集的多变量时间序列数据。在这些情况下,每一类的数据都可能表现出非平稳行为以及复杂的依赖结构。在应用贝叶斯分类器之前,我们提出了一种基于vine copula的方法来捕获每个类中的这些特征。Vine copula已经非常成功地模拟了变量之间的不对称尾依赖性,并将其与非平稳单变量时间序列相结合,对每一类的多变量时间序列数据进行了建模。我们使用脑电图神经活动实验的数据来说明这种分类方法,我们想对眼睛状态进行分类。随着时间的推移,头皮上多个位置的神经活动水平被收集起来。我们的方法能够识别相关位置,并允许对数据生成过程进行基于模型的解释。交叉验证研究与该数据集的竞争分类器的比较显示了所提出的分类器的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信