{"title":"Multimodal AutoML via Representation Evolution","authors":"Blaž Škrlj, Matej Bevec, Nadine Lavrac","doi":"10.3390/make5010001","DOIUrl":null,"url":null,"abstract":"With the increasing amounts of available data, learning simultaneously from different types of inputs is becoming necessary to obtain robust and well-performing models. With the advent of representation learning in recent years, lower-dimensional vector-based representations have become available for both images and texts, while automating simultaneous learning from multiple modalities remains a challenging problem. This paper presents an AutoML (automated machine learning) approach to automated machine learning model configuration identification for data composed of two modalities: texts and images. The approach is based on the idea of representation evolution, the process of automatically amplifying heterogeneous representations across several modalities, optimized jointly with a collection of fast, well-regularized linear models. The proposed approach is benchmarked against 11 unimodal and multimodal (texts and images) approaches on four real-life benchmark datasets from different domains. It achieves competitive performance with minimal human effort and low computing requirements, enabling learning from multiple modalities in automated manner for a wider community of researchers.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"8 1","pages":"1-13"},"PeriodicalIF":4.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make5010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing amounts of available data, learning simultaneously from different types of inputs is becoming necessary to obtain robust and well-performing models. With the advent of representation learning in recent years, lower-dimensional vector-based representations have become available for both images and texts, while automating simultaneous learning from multiple modalities remains a challenging problem. This paper presents an AutoML (automated machine learning) approach to automated machine learning model configuration identification for data composed of two modalities: texts and images. The approach is based on the idea of representation evolution, the process of automatically amplifying heterogeneous representations across several modalities, optimized jointly with a collection of fast, well-regularized linear models. The proposed approach is benchmarked against 11 unimodal and multimodal (texts and images) approaches on four real-life benchmark datasets from different domains. It achieves competitive performance with minimal human effort and low computing requirements, enabling learning from multiple modalities in automated manner for a wider community of researchers.