Towards an axiomatization of statistical privacy and utility

Daniel Kifer, Bing-Rong Lin
{"title":"Towards an axiomatization of statistical privacy and utility","authors":"Daniel Kifer, Bing-Rong Lin","doi":"10.1145/1807085.1807106","DOIUrl":null,"url":null,"abstract":"\"Privacy\" and \"utility\" are words that frequently appear in the literature on statistical privacy. But what do these words really mean? In recent years, many problems with intuitive notions of privacy and utility have been uncovered. Thus more formal notions of privacy and utility, which are amenable to mathematical analysis, are needed. In this paper we present our initial work on an axiomatization of privacy and utility. In particular, we study how these concepts are affected by randomized algorithms. Our analysis yields new insights into the construction of both privacy definitions and mechanisms that generate data according to such definitions. In particular, it characterizes a class of relaxations of differential privacy and shows that desirable outputs of a differentially private mechanism are best interpreted as certain graphs rather than query answers or synthetic data.","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"1 1","pages":"147-158"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1807085.1807106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

Abstract

"Privacy" and "utility" are words that frequently appear in the literature on statistical privacy. But what do these words really mean? In recent years, many problems with intuitive notions of privacy and utility have been uncovered. Thus more formal notions of privacy and utility, which are amenable to mathematical analysis, are needed. In this paper we present our initial work on an axiomatization of privacy and utility. In particular, we study how these concepts are affected by randomized algorithms. Our analysis yields new insights into the construction of both privacy definitions and mechanisms that generate data according to such definitions. In particular, it characterizes a class of relaxations of differential privacy and shows that desirable outputs of a differentially private mechanism are best interpreted as certain graphs rather than query answers or synthetic data.
迈向统计隐私和效用的公理化
“隐私”和“效用”是统计隐私文献中经常出现的词。但是这些词到底是什么意思呢?近年来,人们发现了许多关于隐私和效用的直觉概念的问题。因此,需要更正式的隐私和效用概念,这些概念适合于数学分析。在本文中,我们介绍了我们对隐私和效用的公理化的初步工作。特别地,我们研究了这些概念如何受到随机算法的影响。我们的分析对隐私定义和根据这些定义生成数据的机制的构建产生了新的见解。特别是,它描述了一类微分隐私的松弛,并表明微分隐私机制的理想输出最好被解释为某些图,而不是查询答案或合成数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信