Pull-In Instability of MSGT Piezoelectric Polymeric FG-SWCNTs Reinforced Nanocomposite Considering Surface Stress Effect

A. G. Arani, B. R. Navi, M. Mohammadimehr, S. Niknejad, A. G. Arani, A. Hosseinpour
{"title":"Pull-In Instability of MSGT Piezoelectric Polymeric FG-SWCNTs Reinforced Nanocomposite Considering Surface Stress Effect","authors":"A. G. Arani, B. R. Navi, M. Mohammadimehr, S. Niknejad, A. G. Arani, A. Hosseinpour","doi":"10.22034/JSM.2019.668611","DOIUrl":null,"url":null,"abstract":"In this paper, the pull-in instability of piezoelectric polymeric nanocomposite plates reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) based on modified strain gradient theory (MSGT) is investigated. Various types of SWCNTs are distributed in piezoelectric polymeric plate and also surface stress effect is considered in this research. The piezoelectric polymeric nanocomposite plate is subjected to electro-magneto-mechanical loadings. The nonlinear governing equations are derived from Hamilton's principle. Then, pull-in voltage and natural frequency of the piezoelectric polymeric nanocomposite plates are calculated by Newton-Raphson method. There is a good agreement between the obtained and other researcher results. The results show that the pull-in voltage and natural frequency increase with increasing of applied voltage, magnetic field, FG-SWCNTs orientation angle and small scale parameters and decrease with increasing of van der Waals and Casimir forces, residual surface stress constant. Furthermore, highest and lowest pull-in voltages are belonging to FG-X and FG-O distribution types of SWCNTs.","PeriodicalId":17126,"journal":{"name":"Journal of Solid Mechanics and Materials Engineering","volume":"2 1","pages":"759-777"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid Mechanics and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/JSM.2019.668611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, the pull-in instability of piezoelectric polymeric nanocomposite plates reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) based on modified strain gradient theory (MSGT) is investigated. Various types of SWCNTs are distributed in piezoelectric polymeric plate and also surface stress effect is considered in this research. The piezoelectric polymeric nanocomposite plate is subjected to electro-magneto-mechanical loadings. The nonlinear governing equations are derived from Hamilton's principle. Then, pull-in voltage and natural frequency of the piezoelectric polymeric nanocomposite plates are calculated by Newton-Raphson method. There is a good agreement between the obtained and other researcher results. The results show that the pull-in voltage and natural frequency increase with increasing of applied voltage, magnetic field, FG-SWCNTs orientation angle and small scale parameters and decrease with increasing of van der Waals and Casimir forces, residual surface stress constant. Furthermore, highest and lowest pull-in voltages are belonging to FG-X and FG-O distribution types of SWCNTs.
考虑表面应力效应的MSGT压电聚合物FG-SWCNTs增强纳米复合材料的拉入不稳定性
本文基于修正应变梯度理论(MSGT)研究了单壁功能梯度碳纳米管(FG-SWCNTs)增强的压电聚合物纳米复合材料板的拉入失稳问题。不同类型的SWCNTs分布在压电聚合物板中,本研究也考虑了表面应力效应。压电聚合物纳米复合材料板承受电磁机械载荷。非线性控制方程由哈密顿原理导出。然后用牛顿-拉夫逊法计算了压电聚合物纳米复合材料板的拉入电压和固有频率。所得结果与其他研究者的研究结果有很好的一致性。结果表明:随着外加电压、磁场、FG-SWCNTs取向角和小尺度参数的增大,拉入电压和固有频率增大;随着范德华力和卡西米尔力、残余表面应力常数的增大,拉入电压和固有频率减小;此外,最高和最低的拉入电压属于SWCNTs的FG-X和FG-O分布类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信