What Users Don't Expect about Exploratory Data Analysis on Approximate Query Processing Systems

Dominik Moritz, Danyel Fisher
{"title":"What Users Don't Expect about Exploratory Data Analysis on Approximate Query Processing Systems","authors":"Dominik Moritz, Danyel Fisher","doi":"10.1145/3077257.3077258","DOIUrl":null,"url":null,"abstract":"Pangloss implements \"Optimistic Visualization\", a method that gives analysts confidence to use approximate results for exploratory data analysis. In this paper, we outline how analysts' experience with an approximate visualization system did not match their intuitions. These observations have implications for the design of future data exploration systems that expose uncertainty. We also describe requirements for approximate query engines to enable the next generation of exploratory visualization systems.","PeriodicalId":92279,"journal":{"name":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077257.3077258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Pangloss implements "Optimistic Visualization", a method that gives analysts confidence to use approximate results for exploratory data analysis. In this paper, we outline how analysts' experience with an approximate visualization system did not match their intuitions. These observations have implications for the design of future data exploration systems that expose uncertainty. We also describe requirements for approximate query engines to enable the next generation of exploratory visualization systems.
关于近似查询处理系统的探索性数据分析,用户不期望的是什么
Pangloss实现了“乐观可视化”,这种方法使分析师有信心使用近似结果进行探索性数据分析。在本文中,我们概述了分析师使用近似可视化系统的经验如何与他们的直觉不符。这些观察结果对揭示不确定性的未来数据探索系统的设计具有启示意义。我们还描述了对近似查询引擎的需求,以实现下一代探索性可视化系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信