SVkNN: Efficient Secure and Verifiable k-Nearest Neighbor Query on the Cloud Platform*

Ningning Cui, Xiaochun Yang, Bin Wang, Jianxin Li, Guoren Wang
{"title":"SVkNN: Efficient Secure and Verifiable k-Nearest Neighbor Query on the Cloud Platform*","authors":"Ningning Cui, Xiaochun Yang, Bin Wang, Jianxin Li, Guoren Wang","doi":"10.1109/ICDE48307.2020.00029","DOIUrl":null,"url":null,"abstract":"With the boom in cloud computing, data outsourcing in location-based services is proliferating and has attracted increasing interest from research communities and commercial applications. Nevertheless, since the cloud server is probably both untrusted and malicious, concerns of data security and result integrity have become on the rise sharply. However, there exist little work that can commendably assure the data security and result integrity using a unified way. In this paper, we study the problem of secure and verifiable k nearest neighbor query (SVkNN). To support SVkNN, we first propose a novel unified structure, called verifiable and secure index (VSI). Based on this, we devise a series of secure protocols to facilitate query processing and develop a compact verification strategy. Given an SVkNN query, our proposed solution can not merely answer the query efficiently while can guarantee: 1) preserving the privacy of data, query, result and access patterns; 2) authenticating the correctness and completeness of the results without leaking the confidentiality. Finally, the formal security analysis and complexity analysis are theoretically proven and the performance and feasibility of our proposed approaches are empirically evaluated and demonstrated.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"7 1","pages":"253-264"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

With the boom in cloud computing, data outsourcing in location-based services is proliferating and has attracted increasing interest from research communities and commercial applications. Nevertheless, since the cloud server is probably both untrusted and malicious, concerns of data security and result integrity have become on the rise sharply. However, there exist little work that can commendably assure the data security and result integrity using a unified way. In this paper, we study the problem of secure and verifiable k nearest neighbor query (SVkNN). To support SVkNN, we first propose a novel unified structure, called verifiable and secure index (VSI). Based on this, we devise a series of secure protocols to facilitate query processing and develop a compact verification strategy. Given an SVkNN query, our proposed solution can not merely answer the query efficiently while can guarantee: 1) preserving the privacy of data, query, result and access patterns; 2) authenticating the correctness and completeness of the results without leaking the confidentiality. Finally, the formal security analysis and complexity analysis are theoretically proven and the performance and feasibility of our proposed approaches are empirically evaluated and demonstrated.
云平台上高效、安全、可验证的k近邻查询方法*
随着云计算的蓬勃发展,基于位置的服务的数据外包正在激增,并吸引了越来越多的研究团体和商业应用的兴趣。然而,由于云服务器可能既不可信又带有恶意,因此对数据安全性和结果完整性的担忧急剧上升。然而,目前很少有工作能够用统一的方法很好地保证数据的安全性和结果的完整性。本文研究了安全可验证的k近邻查询(SVkNN)问题。为了支持SVkNN,我们首先提出了一种新的统一结构,称为可验证和安全索引(VSI)。在此基础上,我们设计了一系列安全协议来简化查询处理,并开发了紧凑的验证策略。对于一个SVkNN查询,我们提出的解决方案不仅能够高效地回答查询,而且能够保证:1)保持数据、查询、结果和访问模式的隐私性;2)在不泄露机密性的前提下,验证结果的正确性和完整性。最后,从理论上证明了形式安全分析和复杂性分析,并对我们提出的方法的性能和可行性进行了实证评估和论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信