G. Alessandrini, M. Hoop, Romina Gaburro, E. Sincich
{"title":"Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data","authors":"G. Alessandrini, M. Hoop, Romina Gaburro, E. Sincich","doi":"10.3233/ASY-171457","DOIUrl":null,"url":null,"abstract":"We consider the inverse boundary value problem of determining the potential $q$ in the equation $\\Delta u + qu = 0$ in $\\Omega\\subset\\mathbb{R}^n$, from local Cauchy data. A result of global Lipschitz stability is obtained in dimension $n\\geq 3$ for potentials that are piecewise linear on a given partition of $\\Omega$. No sign, nor spectrum condition on $q$ is assumed, hence our treatment encompasses the reduced wave equation $\\Delta u + k^2c^{-2}u=0$ at fixed frequency $k$.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"6 1","pages":"115-149"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-171457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
We consider the inverse boundary value problem of determining the potential $q$ in the equation $\Delta u + qu = 0$ in $\Omega\subset\mathbb{R}^n$, from local Cauchy data. A result of global Lipschitz stability is obtained in dimension $n\geq 3$ for potentials that are piecewise linear on a given partition of $\Omega$. No sign, nor spectrum condition on $q$ is assumed, hence our treatment encompasses the reduced wave equation $\Delta u + k^2c^{-2}u=0$ at fixed frequency $k$.
我们考虑了用局部柯西数据确定$\Omega\subset\mathbb{R}^n$方程$\Delta u + qu = 0$中势$q$的反边值问题。对于在$\Omega$的给定分区上分段线性的势,在$n\geq 3$维上得到了全局Lipschitz稳定性的结果。在$q$上没有符号,也没有频谱条件,因此我们的处理包含固定频率$k$的简化波动方程$\Delta u + k^2c^{-2}u=0$。