Data Fusion through Fuzzy-Bayesian Networks for Belief Generation in Cognitive Agents

Munyque Mittelmann, Jerusa Marchi, A. V. Wangenheim
{"title":"Data Fusion through Fuzzy-Bayesian Networks for Belief Generation in Cognitive Agents","authors":"Munyque Mittelmann, Jerusa Marchi, A. V. Wangenheim","doi":"10.22456/2175-2745.87085","DOIUrl":null,"url":null,"abstract":"Situation Awareness provides a theory for agents decision making to allow perception and comprehension of his environment. However, the transformation of the sensory stimulus in beliefs to favor the BDI reasoning cycle is still an unexplored subject. Autonomous agent projects often require the use of multiple sensors to capture environmental aspects. The natural variability of the physical world and the imprecision contained in linguistic concepts used by humans mean that sensory data contain different types of uncertainty in their measurements. Thus, to obtain the Situational Awareness for Agents with physical sensors, it is necessary to define a data fusion process to perform uncertainty treatment. This paper presents a model to beliefs generation using fuzzy-bayesian inference. An example in robotics navigation and location is used to illustrate the proposal.","PeriodicalId":82472,"journal":{"name":"Research initiative, treatment action : RITA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research initiative, treatment action : RITA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.87085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Situation Awareness provides a theory for agents decision making to allow perception and comprehension of his environment. However, the transformation of the sensory stimulus in beliefs to favor the BDI reasoning cycle is still an unexplored subject. Autonomous agent projects often require the use of multiple sensors to capture environmental aspects. The natural variability of the physical world and the imprecision contained in linguistic concepts used by humans mean that sensory data contain different types of uncertainty in their measurements. Thus, to obtain the Situational Awareness for Agents with physical sensors, it is necessary to define a data fusion process to perform uncertainty treatment. This paper presents a model to beliefs generation using fuzzy-bayesian inference. An example in robotics navigation and location is used to illustrate the proposal.
基于模糊贝叶斯网络的认知智能体信念生成数据融合
情境感知为智能体的决策提供了理论依据,使其能够感知和理解其所处的环境。然而,信念中的感觉刺激转化为有利于BDI推理循环仍然是一个未被探索的课题。自主代理项目通常需要使用多个传感器来捕获环境方面。物理世界的自然可变性和人类使用的语言概念所包含的不精确性意味着感官数据在其测量中包含不同类型的不确定性。因此,为了获得具有物理传感器的agent的态势感知能力,需要定义一个数据融合过程来进行不确定性处理。提出了一种基于模糊贝叶斯推理的信念生成模型。最后以机器人导航与定位为例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信