{"title":"On Irregularities of Distribution of Binary Sequences Relative to Arithmetic Progressions, II (Constructive Bounds)","authors":"Cécile Dartyge, Katalin Gyarmati, A. Sárközy","doi":"10.2478/udt-2018-0008","DOIUrl":null,"url":null,"abstract":"Abstract In Part I of this paper we studied the irregularities of distribution of binary sequences relative to short arithmetic progressions. First we introduced a quantitative measure for this property. Then we studied the typical and minimal values of this measure for binary sequences of a given length. In this paper our goal is to give constructive bounds for these minimal values.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"76 1","pages":"1 - 21"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2018-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In Part I of this paper we studied the irregularities of distribution of binary sequences relative to short arithmetic progressions. First we introduced a quantitative measure for this property. Then we studied the typical and minimal values of this measure for binary sequences of a given length. In this paper our goal is to give constructive bounds for these minimal values.