{"title":"Through-Thickness Compression Testing of Commercially Pure (Grade II) Titanium Thin Sheet to Large Strains","authors":"K. K. Smith, M. E. Kassner","doi":"10.1155/2016/6178790","DOIUrl":null,"url":null,"abstract":"This study examined the through-thickness ( -direction) compressive stress versus strain behavior of 99.76% commercially pure (grade II) titanium sheet with relatively small grain size. The current study complemented earlier compression studies by examining a very thin (1.60 mm) sheet and deforming the Ti by successive compression tests to relatively large strains. The low aspect ratio, of the compression specimens extracted from the sheet, led to frictional effects that can create high triaxial stresses complicating the uniaxial stress versus strain behavior analysis. Nonetheless, reasonable estimates were made of the through-thickness large-strain behavior of a commercially pure (grade II) thin Ti sheet to relatively large true strains of about 1.0.","PeriodicalId":16342,"journal":{"name":"Journal of Metallurgy","volume":"6 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/6178790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This study examined the through-thickness ( -direction) compressive stress versus strain behavior of 99.76% commercially pure (grade II) titanium sheet with relatively small grain size. The current study complemented earlier compression studies by examining a very thin (1.60 mm) sheet and deforming the Ti by successive compression tests to relatively large strains. The low aspect ratio, of the compression specimens extracted from the sheet, led to frictional effects that can create high triaxial stresses complicating the uniaxial stress versus strain behavior analysis. Nonetheless, reasonable estimates were made of the through-thickness large-strain behavior of a commercially pure (grade II) thin Ti sheet to relatively large true strains of about 1.0.