{"title":"On the population least‐squares criterion in the monotone single index model","authors":"F. Balabdaoui, C. Durot, Christopher Fragneau","doi":"10.1111/stan.12240","DOIUrl":null,"url":null,"abstract":"Monotone single index models have gained increasing popularity over the past decades due to their flexibility and versatile use in diverse areas. Semi‐parametric estimators such as the least squares and maximum likelihood estimators of the unknown index and monotone ridge function were considered to make inference in such models without having to choose some tuning parameter. Description of the asymptotic behavior of those estimators crucially depends on acquiring a good understanding of the optimization problems associated with the corresponding population criteria. In this paper, we give several insights into these criteria by proving existence of minimizers thereof over general classes of parameters. In order to describe these minimizers, we prove different results which give the direction of variation of the population criteria in general and in the special case where the common distribution of the covariates is Gaussian. A complementary simulation study was performed and whose results give support to our main theorems.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"1 1","pages":"408 - 436"},"PeriodicalIF":1.4000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12240","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
Monotone single index models have gained increasing popularity over the past decades due to their flexibility and versatile use in diverse areas. Semi‐parametric estimators such as the least squares and maximum likelihood estimators of the unknown index and monotone ridge function were considered to make inference in such models without having to choose some tuning parameter. Description of the asymptotic behavior of those estimators crucially depends on acquiring a good understanding of the optimization problems associated with the corresponding population criteria. In this paper, we give several insights into these criteria by proving existence of minimizers thereof over general classes of parameters. In order to describe these minimizers, we prove different results which give the direction of variation of the population criteria in general and in the special case where the common distribution of the covariates is Gaussian. A complementary simulation study was performed and whose results give support to our main theorems.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.