{"title":"Strong Convergence of the Hybrid Halpern Type Proximal Point Algorithm","authors":"Liu Liu, Qing-bang Zhang","doi":"10.11648/J.ACM.20200906.13","DOIUrl":null,"url":null,"abstract":"Based on the proximal point algorithm, which is a widely used tool for solving a variety of convex optimization problems, there are many algorithms for finding zeros of maximally monotone operators. The algorithm works by applying successively so-called \"resolvent\" mappings with errors associated to the original object, and is weakly convergent in Hilbert space. In order to acquiring the strong convergence of the algorithm, in this paper, we construct a hybrid Halpern type proximal point algorithm with errors for approximating the zero of a maximal monotone operator, which is a combination of modified proximal point algorithm raised by Yao and Noor and Halpern inexact proximal point algorithm raised by Zhang, respectively. Then, we prove the strong convergence of our algorithm with weaker assumptions in Hilbert space. Finally, we present a numerical example to show the convergence and the convergence speed, which is not affected but accelerated by the projection in the algorithm. Our work improved and generalized some known results.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":"1 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11648/J.ACM.20200906.13","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the proximal point algorithm, which is a widely used tool for solving a variety of convex optimization problems, there are many algorithms for finding zeros of maximally monotone operators. The algorithm works by applying successively so-called "resolvent" mappings with errors associated to the original object, and is weakly convergent in Hilbert space. In order to acquiring the strong convergence of the algorithm, in this paper, we construct a hybrid Halpern type proximal point algorithm with errors for approximating the zero of a maximal monotone operator, which is a combination of modified proximal point algorithm raised by Yao and Noor and Halpern inexact proximal point algorithm raised by Zhang, respectively. Then, we prove the strong convergence of our algorithm with weaker assumptions in Hilbert space. Finally, we present a numerical example to show the convergence and the convergence speed, which is not affected but accelerated by the projection in the algorithm. Our work improved and generalized some known results.
期刊介绍:
Applied and Computational Mathematics (ISSN Online: 2328-5613, ISSN Print: 2328-5605) is a prestigious journal that focuses on the field of applied and computational mathematics. It is driven by the computational revolution and places a strong emphasis on innovative applied mathematics with potential for real-world applicability and practicality.
The journal caters to a broad audience of applied mathematicians and scientists who are interested in the advancement of mathematical principles and practical aspects of computational mathematics. Researchers from various disciplines can benefit from the diverse range of topics covered in ACM. To ensure the publication of high-quality content, all research articles undergo a rigorous peer review process. This process includes an initial screening by the editors and anonymous evaluation by expert reviewers. This guarantees that only the most valuable and accurate research is published in ACM.