Notes on the zero-divisor graph and annihilating-ideal graph of a reduced ring

IF 0.8 4区 数学 Q2 MATHEMATICS
M. Badie
{"title":"Notes on the zero-divisor graph and annihilating-ideal graph of a reduced ring","authors":"M. Badie","doi":"10.2478/auom-2021-0018","DOIUrl":null,"url":null,"abstract":"Abstract We translate some graph properties of 𝔸𝔾(R) and Γ(R) to some topological properties of Zariski topology. We prove that the facts “(1) The zero ideal of R is an anti fixed-place ideal. (2) Min(R) does not have any isolated point. (3) Rad(𝔸𝔾 (R)) = 3. (4) Rad(Γ(R)) = 3. (5) Γ(R) is triangulated (6) 𝔸𝔾 (R) is triangulated.” are equivalent. Also, we show that if the zero ideal of a ring R is a fixed-place ideal, then dtt(𝔸𝔾 (R)) = |ℬ(R)| and also if in addition |Min(R)| > 2, then dt(𝔸𝔾 (R)) = |ℬ (R)|. Finally, it is shown that dt(𝔸𝔾 (R)) is finite if and only if dtt(𝔸𝔾 (R)) is finite if and only if Min(R) is finite.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"1 1","pages":"51 - 70"},"PeriodicalIF":0.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We translate some graph properties of 𝔸𝔾(R) and Γ(R) to some topological properties of Zariski topology. We prove that the facts “(1) The zero ideal of R is an anti fixed-place ideal. (2) Min(R) does not have any isolated point. (3) Rad(𝔸𝔾 (R)) = 3. (4) Rad(Γ(R)) = 3. (5) Γ(R) is triangulated (6) 𝔸𝔾 (R) is triangulated.” are equivalent. Also, we show that if the zero ideal of a ring R is a fixed-place ideal, then dtt(𝔸𝔾 (R)) = |ℬ(R)| and also if in addition |Min(R)| > 2, then dt(𝔸𝔾 (R)) = |ℬ (R)|. Finally, it is shown that dt(𝔸𝔾 (R)) is finite if and only if dtt(𝔸𝔾 (R)) is finite if and only if Min(R) is finite.
关于约简环的零因子图和湮灭理想图的注释
摘要我们将一些图的性质转化为一些Zariski拓扑的性质。我们证明了以下事实:(1)R的零理想是一个反定点理想。(2) Min(R)不存在孤立点。(3) Rad(lgg (R)) = 3。(4) Rad(Γ(R)) = 3。(5) Γ(R)是三角剖分(6)都是等价的。此外,我们还证明了如果环R的零理想是定位理想,那么dtt(lgg (R)) = | (R)|,并且如果另外|Min(R)| > 2,那么dt(lgg (R)) = | (R)|。最后,证明了当且仅当Min(R)是有限的,dt(lgg (R))是有限的,且仅当dtt(lgg (R))是有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信