Generalized constraint neural network regression model subject to equality function constraints

Linlin Cao, Bao-Gang Hu
{"title":"Generalized constraint neural network regression model subject to equality function constraints","authors":"Linlin Cao, Bao-Gang Hu","doi":"10.1109/IJCNN.2015.7280507","DOIUrl":null,"url":null,"abstract":"This paper describes a progress of the previous study on the generalized constraint neural networks (GCNN). The GCNN model aims to utilize any type of priors in an explicate form so that the model can achieve improved performance and better transparency. A specific type of priors, that is, equality function constraints, is investigated in this work. When the existing approaches impose the constrains in a discretized means on the given function, our approach, called GCNN-EF, is able to satisfy the constrain perfectly and completely on the equation. We realize GCNN-EF by a weighted combination of the output of the conventional radial basis function neural network (RBFNN) and the output expressed by the constraints. Numerical studies are conducted on three synthetic data sets in comparing with other existing approaches. Simulation results demonstrate the benefit and efficiency using GCNN-EF.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"23 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes a progress of the previous study on the generalized constraint neural networks (GCNN). The GCNN model aims to utilize any type of priors in an explicate form so that the model can achieve improved performance and better transparency. A specific type of priors, that is, equality function constraints, is investigated in this work. When the existing approaches impose the constrains in a discretized means on the given function, our approach, called GCNN-EF, is able to satisfy the constrain perfectly and completely on the equation. We realize GCNN-EF by a weighted combination of the output of the conventional radial basis function neural network (RBFNN) and the output expressed by the constraints. Numerical studies are conducted on three synthetic data sets in comparing with other existing approaches. Simulation results demonstrate the benefit and efficiency using GCNN-EF.
受等式函数约束的广义约束神经网络回归模型
本文综述了广义约束神经网络(GCNN)的研究进展。GCNN模型旨在以一种明确的形式利用任何类型的先验,从而使模型获得更好的性能和更好的透明度。本文研究了一类特殊的先验,即等式函数约束。当现有的方法以离散化的方式对给定函数施加约束时,我们的方法GCNN-EF能够完全满足方程上的约束。我们通过将传统径向基函数神经网络(RBFNN)的输出与约束表示的输出加权组合来实现GCNN-EF。对三种合成数据集进行了数值研究,并与已有方法进行了比较。仿真结果验证了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信