A REVIEW OF THE SUPRA-CONVERGENCES OF SHORTLEY-WELLER METHOD FOR POISSON EQUATION

IF 0.3 Q4 MATHEMATICS, APPLIED
G. Yoon, Chohong Min
{"title":"A REVIEW OF THE SUPRA-CONVERGENCES OF SHORTLEY-WELLER METHOD FOR POISSON EQUATION","authors":"G. Yoon, Chohong Min","doi":"10.12941/JKSIAM.2014.18.051","DOIUrl":null,"url":null,"abstract":"The Shortley-Weller method is a basic finite difference method for solving the Poisson equation with Dirichlet boundary condition. In this article, we review the analysis for supra-convergence of the Shortley-Weller method. Though consistency error is first order accurate at some locations, the convergence order is globally second order. We call this increase of the order of accuracy, supra-convergence. Our review is not a simple copy but serves a basic foundation to go toward yet undiscovered analysis for another supra-convergence: we present a partial result for supra-convergence for the gradient of solution.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"37 1","pages":"51-60"},"PeriodicalIF":0.3000,"publicationDate":"2014-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2014.18.051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 18

Abstract

The Shortley-Weller method is a basic finite difference method for solving the Poisson equation with Dirichlet boundary condition. In this article, we review the analysis for supra-convergence of the Shortley-Weller method. Though consistency error is first order accurate at some locations, the convergence order is globally second order. We call this increase of the order of accuracy, supra-convergence. Our review is not a simple copy but serves a basic foundation to go toward yet undiscovered analysis for another supra-convergence: we present a partial result for supra-convergence for the gradient of solution.
泊松方程的shortley-weller方法的超收敛性综述
Shortley-Weller方法是求解具有Dirichlet边界条件的泊松方程的一种基本有限差分方法。本文综述了Shortley-Weller方法的超收敛性分析。虽然一致性误差在某些位置是一阶精确的,但全局的收敛阶是二阶的。我们把这种精度阶数的增加称为超收敛。我们的评论不是一个简单的复制,而是为另一个超收敛的尚未发现的分析提供了一个基本的基础:我们提出了一个梯度解的超收敛的部分结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信