Singular bundles with bounded L²-curvatures

IF 0.7 Q2 MATHEMATICS
T. M. Kessel
{"title":"Singular bundles with bounded L²-curvatures","authors":"T. M. Kessel","doi":"10.3929/ETHZ-A-005688614","DOIUrl":null,"url":null,"abstract":"Abstract: We consider calculus of variations of the Yang-Mills functional in dimensions larger than the critical dimension 4. We explain how this naturally leads to a class of – a priori not well-defined – singular bundles including possibly “almost everywhere singular bundles”. In order to overcome this difficulty, we suggest a suitable new framework, namely the notion of singular bundles with bounded L-curvatures.","PeriodicalId":54191,"journal":{"name":"BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA","volume":"38 1","pages":"881-901"},"PeriodicalIF":0.7000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ETHZ-A-005688614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

Abstract

Abstract: We consider calculus of variations of the Yang-Mills functional in dimensions larger than the critical dimension 4. We explain how this naturally leads to a class of – a priori not well-defined – singular bundles including possibly “almost everywhere singular bundles”. In order to overcome this difficulty, we suggest a suitable new framework, namely the notion of singular bundles with bounded L-curvatures.
具有有界L²曲率的奇异束
摘要:考虑大于临界维数4的Yang-Mills泛函的变分演算。我们解释了这是如何自然地导致一类——先验地没有定义好的——奇异束,可能包括“几乎处处奇异束”。为了克服这一困难,我们提出了一个合适的新框架,即有界l曲率奇异束的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
28
期刊介绍: The Bollettino dell''Unione Matematica Italiana (BUMI) is the scientific journal of Unione Matematica Italiana: it publishes original research and high quality survey articles in all fields of Mathematics. There is no upper limit to the number of pages per article. The Unione Matematica Italiana was founded by Salvatore Pincherle in 1922, and has published BUMI since then. Articles published in BUMI will be freely available to the general public on SpringerLink 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信