An Efficient Method for the Inverse Design of Thin-Wall Stiffened Structure Based on the Machine Learning Technique

IF 0.1 4区 工程技术 Q4 ENGINEERING, AEROSPACE
Yongtao Lyu, Yibiao Niu, Tao He, Limin Shu, Michael Zhuravkov, Shutao Zhou
{"title":"An Efficient Method for the Inverse Design of Thin-Wall Stiffened Structure Based on the Machine Learning Technique","authors":"Yongtao Lyu, Yibiao Niu, Tao He, Limin Shu, Michael Zhuravkov, Shutao Zhou","doi":"10.3390/aerospace10090761","DOIUrl":null,"url":null,"abstract":"In this paper, a new method using the backpropagation (BP) neural network combined with the improved genetic algorithm (GA) is proposed for the inverse design of thin-walled reinforced structures. The BP neural network model is used to establish the mapping relationship between the input parameters (reinforcement type, rib height, rib width, skin thickness and rib number) and the output parameters (structural buckling load). A genetic algorithm is added to obtain the inversely designed result of a thin-wall stiffened structure according to the actual demand. In the end, according to the geometric parameters of inverse design, the thin-walled stiffened structure is reconstructed geometrically, and the numerical solutions of finite element calculation are compared with the target values of actual demand. The results show that the maximal inversely designed error is within 5.1%, which implies that the inverse design method of structural geometric parameters based on the machine learning and genetic algorithm is efficient and feasible.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"35 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace America","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10090761","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new method using the backpropagation (BP) neural network combined with the improved genetic algorithm (GA) is proposed for the inverse design of thin-walled reinforced structures. The BP neural network model is used to establish the mapping relationship between the input parameters (reinforcement type, rib height, rib width, skin thickness and rib number) and the output parameters (structural buckling load). A genetic algorithm is added to obtain the inversely designed result of a thin-wall stiffened structure according to the actual demand. In the end, according to the geometric parameters of inverse design, the thin-walled stiffened structure is reconstructed geometrically, and the numerical solutions of finite element calculation are compared with the target values of actual demand. The results show that the maximal inversely designed error is within 5.1%, which implies that the inverse design method of structural geometric parameters based on the machine learning and genetic algorithm is efficient and feasible.
基于机器学习技术的薄壁加劲结构反设计方法
本文提出了一种将BP神经网络与改进遗传算法相结合的薄壁钢筋结构反设计新方法。采用BP神经网络模型建立输入参数(配筋类型、筋高、筋宽、蒙皮厚度、筋数)与输出参数(结构屈曲载荷)之间的映射关系。根据实际需求,采用遗传算法对薄壁加筋结构进行反设计,得到反设计结果。最后,根据反设计的几何参数,对薄壁加筋结构进行几何重构,并将有限元计算的数值解与实际需求目标值进行比较。结果表明,最大反设计误差在5.1%以内,表明基于机器学习和遗传算法的结构几何参数反设计方法是有效可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aerospace America
Aerospace America 工程技术-工程:宇航
自引率
0.00%
发文量
9
审稿时长
4-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信