{"title":"Periodic representations for quadratic irrationals in the field of p-adic numbers","authors":"Stefano Barbero, Umberto Cerruti, N. Murru","doi":"10.1090/MCOM/3640","DOIUrl":null,"url":null,"abstract":"<p>Continued fractions have been widely studied in the field of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic numbers <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb Q_p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, but currently there is no algorithm replicating all the good properties that continued fractions have over the real numbers regarding, in particular, finiteness and periodicity. In this paper, first we propose a periodic representation, which we will call <italic>standard</italic>, for any quadratic irrational via <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic continued fractions, even if it is not obtained by a specific algorithm. This periodic representation provides simultaneous rational approximations for a quadratic irrational both in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb Q_p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Moreover given two primes <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>p</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">p_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>p</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">p_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, using the Binomial transform, we are also able to pass from approximations in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>p</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}_{p_1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to approximations in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>p</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}_{p_2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for a given quadratic irrational. Then, we focus on a specific <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>–adic continued fraction algorithm proving that it stops in a finite number of steps when processes rational numbers, solving a problem left open in a paper by Browkin [Math. Comp. 70 (2001), pp. 1281–1292]. Finally, we study the periodicity of this algorithm showing when it produces <italic>standard</italic> representations for quadratic irrationals.</p>","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"1 1","pages":"2267-2280"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Continued fractions have been widely studied in the field of pp-adic numbers Qp\mathbb Q_p, but currently there is no algorithm replicating all the good properties that continued fractions have over the real numbers regarding, in particular, finiteness and periodicity. In this paper, first we propose a periodic representation, which we will call standard, for any quadratic irrational via pp-adic continued fractions, even if it is not obtained by a specific algorithm. This periodic representation provides simultaneous rational approximations for a quadratic irrational both in R\mathbb R and Qp\mathbb Q_p. Moreover given two primes p1p_1 and p2p_2, using the Binomial transform, we are also able to pass from approximations in Qp1\mathbb {Q}_{p_1} to approximations in Qp2\mathbb {Q}_{p_2} for a given quadratic irrational. Then, we focus on a specific pp–adic continued fraction algorithm proving that it stops in a finite number of steps when processes rational numbers, solving a problem left open in a paper by Browkin [Math. Comp. 70 (2001), pp. 1281–1292]. Finally, we study the periodicity of this algorithm showing when it produces standard representations for quadratic irrationals.