Periodic representations for quadratic irrationals in the field of p-adic numbers

Stefano Barbero, Umberto Cerruti, N. Murru
{"title":"Periodic representations for quadratic irrationals in the field of p-adic numbers","authors":"Stefano Barbero, Umberto Cerruti, N. Murru","doi":"10.1090/MCOM/3640","DOIUrl":null,"url":null,"abstract":"<p>Continued fractions have been widely studied in the field of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic numbers <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb Q_p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, but currently there is no algorithm replicating all the good properties that continued fractions have over the real numbers regarding, in particular, finiteness and periodicity. In this paper, first we propose a periodic representation, which we will call <italic>standard</italic>, for any quadratic irrational via <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic continued fractions, even if it is not obtained by a specific algorithm. This periodic representation provides simultaneous rational approximations for a quadratic irrational both in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb Q_p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Moreover given two primes <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>p</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">p_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>p</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">p_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, using the Binomial transform, we are also able to pass from approximations in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>p</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}_{p_1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to approximations in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>p</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}_{p_2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for a given quadratic irrational. Then, we focus on a specific <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>–adic continued fraction algorithm proving that it stops in a finite number of steps when processes rational numbers, solving a problem left open in a paper by Browkin [Math. Comp. 70 (2001), pp. 1281–1292]. Finally, we study the periodicity of this algorithm showing when it produces <italic>standard</italic> representations for quadratic irrationals.</p>","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"1 1","pages":"2267-2280"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Continued fractions have been widely studied in the field of p p -adic numbers Q p \mathbb Q_p , but currently there is no algorithm replicating all the good properties that continued fractions have over the real numbers regarding, in particular, finiteness and periodicity. In this paper, first we propose a periodic representation, which we will call standard, for any quadratic irrational via p p -adic continued fractions, even if it is not obtained by a specific algorithm. This periodic representation provides simultaneous rational approximations for a quadratic irrational both in R \mathbb R and Q p \mathbb Q_p . Moreover given two primes p 1 p_1 and p 2 p_2 , using the Binomial transform, we are also able to pass from approximations in Q p 1 \mathbb {Q}_{p_1} to approximations in Q p 2 \mathbb {Q}_{p_2} for a given quadratic irrational. Then, we focus on a specific p p –adic continued fraction algorithm proving that it stops in a finite number of steps when processes rational numbers, solving a problem left open in a paper by Browkin [Math. Comp. 70 (2001), pp. 1281–1292]. Finally, we study the periodicity of this algorithm showing when it produces standard representations for quadratic irrationals.

p进数域中二次无理数的周期表示
连分式在p进数Q p \mathbb Q_p领域得到了广泛的研究,但目前还没有一种算法能复制连分式在实数上所具有的所有优良性质,特别是在有限性和周期性方面。在本文中,我们首先提出了一个周期表示,我们称之为标准,对于任何二次无理数通过p进连分数,即使它不是由一个特定的算法得到。这个周期表示提供了R \mathbb R和Q p \mathbb Q_p中二次无理数的同时有理逼近。此外,给定两个素数p1p_1和p2p_2,利用二项式变换,我们也可以将qp1 \mathbb {Q}_{p_1}中的近似传递到给定二次无理数的qp2 \mathbb {Q}_{p_2}中的近似。然后,我们将重点放在一个特定的p进连分数算法上,证明它在处理有理数时停止在有限的步骤中,解决了Browkin [Math]的一篇论文中留下的一个问题。[p. 70(2001),第1281-1292页]。最后,我们研究了该算法的周期性,表明它何时产生二次无理数的标准表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信