Symplectic homology of fiberwise convex sets and homology of loop spaces

Pub Date : 2019-07-23 DOI:10.4310/jsg.2022.v20.n2.a2
Kei Irie
{"title":"Symplectic homology of fiberwise convex sets and homology of loop spaces","authors":"Kei Irie","doi":"10.4310/jsg.2022.v20.n2.a2","DOIUrl":null,"url":null,"abstract":"For any nonempty, compact and fiberwise convex set $K$ in $T^*\\mathbb{R}^n$, we prove an isomorphism between symplectic homology of $K$ and a certain relative homology of loop spaces of $\\mathbb{R}^n$. We also prove a formula which computes symplectic homology capacity (which is a symplectic capacity defined from symplectic homology) of $K$ using homology of loop spaces. As applications, we prove (i) symplectic homology capacity of any convex body is equal to its Ekeland-Hofer-Zehnder capacity, (ii) a certain subadditivity property of the Hofer-Zehnder capacity, which is a generalization of a result previously proved by Haim-Kislev.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n2.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

For any nonempty, compact and fiberwise convex set $K$ in $T^*\mathbb{R}^n$, we prove an isomorphism between symplectic homology of $K$ and a certain relative homology of loop spaces of $\mathbb{R}^n$. We also prove a formula which computes symplectic homology capacity (which is a symplectic capacity defined from symplectic homology) of $K$ using homology of loop spaces. As applications, we prove (i) symplectic homology capacity of any convex body is equal to its Ekeland-Hofer-Zehnder capacity, (ii) a certain subadditivity property of the Hofer-Zehnder capacity, which is a generalization of a result previously proved by Haim-Kislev.
分享
查看原文
纤维凸集的辛同调与环空间的辛同调
对于$T^*\mathbb{R}^n$中的任意非空紧纤维凸集$K$,证明了$K$的辛同构与$\mathbb{R}^n$的循环空间的某种相对同构。我们还利用环空间的同调证明了一个计算$K$的辛同调容量(由辛同调定义的辛容量)的公式。作为应用,我们证明了(i)任何凸体的辛同调容量等于它的Ekeland-Hofer-Zehnder容量,(ii) Hofer-Zehnder容量的一个次可加性,这是Haim-Kislev先前证明的结果的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信