Standardizing the Crowdsourcing of Healthcare Data Using Modular Ontologies

Hengyi Hu, L. Kerschberg
{"title":"Standardizing the Crowdsourcing of Healthcare Data Using Modular Ontologies","authors":"Hengyi Hu, L. Kerschberg","doi":"10.1109/COMPSAC.2017.220","DOIUrl":null,"url":null,"abstract":"Crowdsourcing data is an essential part of information collection in healthcare. Patient data serves as the foundation for creating healthcare policy, creating new pharmaceuticals, and determining treatment. In this paper, we propose a novel conceptual method of standardizing and classifying the crowdsourcing of healthcare data using modular ontologies, authoritative medical ontologies (AMOs) and other sources. A modular ontology can be constructed to guide data collection for specific aspects of an illness. We will examine this conceptual approach for patients of depression. This will be done by finding association rules in a pre-existing National Institutes of Mental Health (NIMH)'s study on Sequenced Treatment Alternatives to Relieve Depression (STAR*D) patient dataset, and standardized medical terminology found in the Medical Dictionary for Regulatory Activities Terminology (MedDRA) ontology. We will also use classification knowledge from Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Our conceptual method will ensure that newly crowdsourced data can be used to confirm and improve upon the accuracy of previously known symptom associations.","PeriodicalId":6556,"journal":{"name":"2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC)","volume":"1 1","pages":"107-112"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC.2017.220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Crowdsourcing data is an essential part of information collection in healthcare. Patient data serves as the foundation for creating healthcare policy, creating new pharmaceuticals, and determining treatment. In this paper, we propose a novel conceptual method of standardizing and classifying the crowdsourcing of healthcare data using modular ontologies, authoritative medical ontologies (AMOs) and other sources. A modular ontology can be constructed to guide data collection for specific aspects of an illness. We will examine this conceptual approach for patients of depression. This will be done by finding association rules in a pre-existing National Institutes of Mental Health (NIMH)'s study on Sequenced Treatment Alternatives to Relieve Depression (STAR*D) patient dataset, and standardized medical terminology found in the Medical Dictionary for Regulatory Activities Terminology (MedDRA) ontology. We will also use classification knowledge from Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Our conceptual method will ensure that newly crowdsourced data can be used to confirm and improve upon the accuracy of previously known symptom associations.
使用模块化本体标准化医疗保健数据的众包
众包数据是医疗保健信息收集的重要组成部分。患者数据是创建医疗保健政策、创建新药和确定治疗方法的基础。在本文中,我们提出了一种新的概念方法,利用模块化本体、权威医学本体(AMOs)和其他来源对医疗数据众包进行标准化和分类。可以构建模块化本体来指导针对疾病特定方面的数据收集。我们将研究抑郁症患者的这种概念方法。这将通过在已有的美国国家精神卫生研究院(NIMH)关于缓解抑郁症的测序治疗方案(STAR*D)患者数据集中查找关联规则,以及在监管活动术语医学词典(MedDRA)本体中找到的标准化医学术语来完成。我们还将使用精神疾病诊断与统计手册(DSM-5)中的分类知识。我们的概念方法将确保新的众包数据可用于确认和提高先前已知症状关联的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信