The future of Jupiter-like planets around Sun-like stars: first steps

T. Konings, R. Baeyens, L. Decin
{"title":"The future of Jupiter-like planets around Sun-like stars: first steps","authors":"T. Konings, R. Baeyens, L. Decin","doi":"10.1017/S1743921322003696","DOIUrl":null,"url":null,"abstract":"Abstract Planets that orbit low- to intermediate mass main sequence (MS) stars will experience vigorous star-planet interactions when the host star evolves through the giant branches, including the asymptotic giant branch (AGB) phase, due to extreme luminosities and stellar outflows. In this work, we take the first steps towards understanding how a planet’s temperature profile and chemical composition is altered when the host star evolves from the MS to the AGB phase. We used a 1D radiative transfer code to compute the temperature-pressure profile and a 1D chemical kinetics code to simulate the disequilibrium chemistry. We consider a Jupiter-like planet around a Solar-type star in two evolutionary stages (MS and AGB planet) by only varying the stellar luminosity. We find that the temperature throughout the AGB planet’s atmosphere is increased by several hundreds of Kelvin compared to the MS planet. We also find that CO joins H2O and CH4 as a prominent constituent in the AGB planet’s atmospheric composition.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":"45 1","pages":"275 - 277"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Astronomical Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1743921322003696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Planets that orbit low- to intermediate mass main sequence (MS) stars will experience vigorous star-planet interactions when the host star evolves through the giant branches, including the asymptotic giant branch (AGB) phase, due to extreme luminosities and stellar outflows. In this work, we take the first steps towards understanding how a planet’s temperature profile and chemical composition is altered when the host star evolves from the MS to the AGB phase. We used a 1D radiative transfer code to compute the temperature-pressure profile and a 1D chemical kinetics code to simulate the disequilibrium chemistry. We consider a Jupiter-like planet around a Solar-type star in two evolutionary stages (MS and AGB planet) by only varying the stellar luminosity. We find that the temperature throughout the AGB planet’s atmosphere is increased by several hundreds of Kelvin compared to the MS planet. We also find that CO joins H2O and CH4 as a prominent constituent in the AGB planet’s atmospheric composition.
类木星行星围绕类太阳恒星的未来:第一步
当主星经过巨星分支(包括渐近巨星分支(AGB)阶段)演化时,由于极端的光度和恒星流出,围绕低至中等质量主序星(MS)运行的行星将经历剧烈的恒星-行星相互作用。在这项工作中,我们迈出了理解当主星从MS阶段演变到AGB阶段时,行星的温度分布和化学成分是如何改变的第一步。我们使用一维辐射传递代码来计算温度-压力分布,并使用一维化学动力学代码来模拟不平衡化学。我们仅通过改变恒星亮度来考虑一颗类木星行星围绕一颗太阳型恒星的两个演化阶段(MS和AGB行星)。我们发现AGB行星的大气温度比MS行星高了好几百开尔文。我们还发现CO加入H2O和CH4,成为AGB行星大气成分的重要组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信