Schema Encoding for Transferable Dialogue State Tracking

Hyunmin Jeon, G. G. Lee
{"title":"Schema Encoding for Transferable Dialogue State Tracking","authors":"Hyunmin Jeon, G. G. Lee","doi":"10.48550/arXiv.2210.02351","DOIUrl":null,"url":null,"abstract":"Dialogue state tracking (DST) is an essential sub-task for task-oriented dialogue systems. Recent work has focused on deep neural models for DST. However, the neural models require a large dataset for training. Furthermore, applying them to another domain needs a new dataset because the neural models are generally trained to imitate the given dataset. In this paper, we propose Schema Encoding for Transferable Dialogue State Tracking (SET-DST), which is a neural DST method for effective transfer to new domains. Transferable DST could assist developments of dialogue systems even with few dataset on target domains. We use a schema encoder not just to imitate the dataset but to comprehend the schema of the dataset. We aim to transfer the model to new domains by encoding new schemas and using them for DST on multi-domain settings. As a result, SET-DST improved the joint accuracy by 1.46 points on MultiWOZ 2.1.","PeriodicalId":91381,"journal":{"name":"Proceedings of COLING. International Conference on Computational Linguistics","volume":"39 1","pages":"355-366"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of COLING. International Conference on Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.02351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dialogue state tracking (DST) is an essential sub-task for task-oriented dialogue systems. Recent work has focused on deep neural models for DST. However, the neural models require a large dataset for training. Furthermore, applying them to another domain needs a new dataset because the neural models are generally trained to imitate the given dataset. In this paper, we propose Schema Encoding for Transferable Dialogue State Tracking (SET-DST), which is a neural DST method for effective transfer to new domains. Transferable DST could assist developments of dialogue systems even with few dataset on target domains. We use a schema encoder not just to imitate the dataset but to comprehend the schema of the dataset. We aim to transfer the model to new domains by encoding new schemas and using them for DST on multi-domain settings. As a result, SET-DST improved the joint accuracy by 1.46 points on MultiWOZ 2.1.
可转移对话状态跟踪的模式编码
对话状态跟踪(DST)是面向任务的对话系统的重要子任务。最近的工作集中在DST的深度神经模型上。然而,神经模型需要大量的数据集进行训练。此外,将它们应用到另一个领域需要一个新的数据集,因为神经模型通常被训练成模仿给定的数据集。本文提出了基于模式编码的可转移对话状态跟踪(SET-DST)方法,这是一种有效转移到新域的神经DST方法。即使目标域上的数据集很少,可转移的DST也可以帮助开发对话系统。我们使用模式编码器不仅是为了模仿数据集,而且是为了理解数据集的模式。我们的目标是通过编码新模式并将其用于多域设置的DST,将模型转移到新域。因此,SET-DST在MultiWOZ 2.1上将关节精度提高了1.46点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信