Composite metamaterial waveguides for THz sheet beam devices

Y. Shin
{"title":"Composite metamaterial waveguides for THz sheet beam devices","authors":"Y. Shin","doi":"10.1109/IRMMW-THZ.2011.6105234","DOIUrl":null,"url":null,"abstract":"Novel RF waveguides comprised of composite metamaterials with photonic crystal (PC) slabs have been investigated for terahertz (THz) sheet beam device applications such as high gradient accelerators and coherent radiation power sources. Field and dispersion-relation analyses based on numerical EM simulations showed that the designed dielectric PC slabs filter highly overmoded fundamental passband of a sheet beam plasmonic wave structure (staggered grating pair) within a narrow dynamic frequency range of beam-wave synchronism, capable of avoiding various instabilities such as cutoff- and spurious oscillations. Further investigation on the photonic-band-gap (PBG) effect was also extended to the negative index metamaterial (NIM) of split-ring-resonator (SRR) and wire arrays (wire-SRR). It appears that in the composite waveguide a backward plasmonic wave is superimposed with a forward propagating wave, enhancing field intensity at electric and magnetic resonant frequencies. Currently, a beam-wave interaction is being considered with full 3D particle-in-cell (PIC) simulations and RF-test system construction for proof-of-principle (POP) is under way.","PeriodicalId":6353,"journal":{"name":"2011 International Conference on Infrared, Millimeter, and Terahertz Waves","volume":"8 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THZ.2011.6105234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Novel RF waveguides comprised of composite metamaterials with photonic crystal (PC) slabs have been investigated for terahertz (THz) sheet beam device applications such as high gradient accelerators and coherent radiation power sources. Field and dispersion-relation analyses based on numerical EM simulations showed that the designed dielectric PC slabs filter highly overmoded fundamental passband of a sheet beam plasmonic wave structure (staggered grating pair) within a narrow dynamic frequency range of beam-wave synchronism, capable of avoiding various instabilities such as cutoff- and spurious oscillations. Further investigation on the photonic-band-gap (PBG) effect was also extended to the negative index metamaterial (NIM) of split-ring-resonator (SRR) and wire arrays (wire-SRR). It appears that in the composite waveguide a backward plasmonic wave is superimposed with a forward propagating wave, enhancing field intensity at electric and magnetic resonant frequencies. Currently, a beam-wave interaction is being considered with full 3D particle-in-cell (PIC) simulations and RF-test system construction for proof-of-principle (POP) is under way.
用于太赫兹片束器件的复合超材料波导
研究了由光子晶体(PC)板复合材料组成的新型射频波导在太赫兹(THz)片束器件中的应用,如高梯度加速器和相干辐射电源。基于数值EM模拟的场和色散关系分析表明,所设计的介质PC板在窄的波束同步动态频率范围内滤除了片束等离子体波结构(交错光栅对)的高度过模基带,能够避免各种不稳定性,如截止振荡和杂散振荡。对光子带隙(PBG)效应的进一步研究还扩展到劈环谐振器(SRR)和线阵列(wire-SRR)的负折射率超材料(NIM)。在复合波导中,反向等离子体波与正向传播的等离子体波叠加,增强了电谐振频率和磁谐振频率下的场强。目前,研究人员正在考虑波束与波之间的相互作用,包括全3D粒子池(PIC)模拟,以及用于原理验证(POP)的射频测试系统建设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信