{"title":"Emerging Physico-Chemical Methods for Biomass Pretreatment","authors":"E. C. Bensah, M. Mensah","doi":"10.5772/INTECHOPEN.79649","DOIUrl":null,"url":null,"abstract":"A major challenge to commercial production of cellulosic ethanol pertains to the costeffective breakdown of the complex and recalcitrant structure of lignocellulose into its components by pretreatment methods—physical, chemical, physico-chemical, biological and various combinations thereof. The type and conditions of a pretreatment impacts both upstream processes such as size reduction as well as downstream processes such as enzymatic hydrolysis and enzyme loadings, and as such the choice of a pretreatment method for a specific biomass (or mix of materials) is influenced by several factors such as carbohydrate preservation and digestibility, sugar and ethanol yields, energy consumption, equipment and solvent costs, lignin removal and quality, formation of sugar/lignin degradation products, waste production, and water usage, among others. This chapter reviews both well-known and emerging physico-chemical methods of biomass fractionation with regards to process description and applications, advantages and disadvantages, as well as recent innovations employed to improve sugar yields, environmental sustainability and process economics.","PeriodicalId":12484,"journal":{"name":"Fuel Ethanol Production from Sugarcane","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Ethanol Production from Sugarcane","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.79649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
A major challenge to commercial production of cellulosic ethanol pertains to the costeffective breakdown of the complex and recalcitrant structure of lignocellulose into its components by pretreatment methods—physical, chemical, physico-chemical, biological and various combinations thereof. The type and conditions of a pretreatment impacts both upstream processes such as size reduction as well as downstream processes such as enzymatic hydrolysis and enzyme loadings, and as such the choice of a pretreatment method for a specific biomass (or mix of materials) is influenced by several factors such as carbohydrate preservation and digestibility, sugar and ethanol yields, energy consumption, equipment and solvent costs, lignin removal and quality, formation of sugar/lignin degradation products, waste production, and water usage, among others. This chapter reviews both well-known and emerging physico-chemical methods of biomass fractionation with regards to process description and applications, advantages and disadvantages, as well as recent innovations employed to improve sugar yields, environmental sustainability and process economics.