An Analysis of Financial Distress Prediction of Selected Listed Companies in Colombo Stock Exchange

K. Gunawardana
{"title":"An Analysis of Financial Distress Prediction of Selected Listed Companies in Colombo Stock Exchange","authors":"K. Gunawardana","doi":"10.4018/IJSKD.2021040104","DOIUrl":null,"url":null,"abstract":"The main objective of the study is to predict financial distress and developing a prediction model using accounting related variables in selected listed firms in Sri Lanka. Decision criteria for financial distress has been selected based on the existing literature on financial distress prediction applicable to the Sri Lankan firms. A sample of 22 financially distressed firms along with 33 financially non-distressed firms have been used to conduct this study. Artificial neural network was used as the basic approach to the study in predicting financial distress. A neural network to predict financial distress was developed with an accuracy of 85.7% one year prior to its occurrence. The second analysis conducted was the panel regression considering five years of cross-sectional data for the sample of companies selected. This analysis was able to identify a significant relationship of leverage, price-to-book ratio and Tobin's Q ratio to the prediction of financial distress of a firm.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"52 1","pages":"48-70"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSKD.2021040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The main objective of the study is to predict financial distress and developing a prediction model using accounting related variables in selected listed firms in Sri Lanka. Decision criteria for financial distress has been selected based on the existing literature on financial distress prediction applicable to the Sri Lankan firms. A sample of 22 financially distressed firms along with 33 financially non-distressed firms have been used to conduct this study. Artificial neural network was used as the basic approach to the study in predicting financial distress. A neural network to predict financial distress was developed with an accuracy of 85.7% one year prior to its occurrence. The second analysis conducted was the panel regression considering five years of cross-sectional data for the sample of companies selected. This analysis was able to identify a significant relationship of leverage, price-to-book ratio and Tobin's Q ratio to the prediction of financial distress of a firm.
科伦坡证券交易所上市公司财务困境预测分析
本研究的主要目的是预测财务困境,并在斯里兰卡选定的上市公司使用会计相关变量开发预测模型。财务困境的决策标准已经选择基于现有的文献对财务困境预测适用于斯里兰卡公司。22家财务困境公司和33家财务非困境公司的样本被用来进行这项研究。本文采用人工神经网络作为财务危机预测的基本方法。一个预测财务危机的神经网络在其发生前一年的准确率为85.7%。第二个分析进行了面板回归考虑五年的横截面数据的公司选择的样本。该分析能够确定杠杆率、市净率和托宾Q比与公司财务困境的预测之间的显著关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信