A. Mishchenko, R. Brayton, Stephen Jang, Victor N. Kravets
{"title":"Delay optimization using SOP balancing","authors":"A. Mishchenko, R. Brayton, Stephen Jang, Victor N. Kravets","doi":"10.1109/ICCAD.2011.6105357","DOIUrl":null,"url":null,"abstract":"Reducing delay of a digital circuit is an important topic in logic synthesis for standard cells and LUT-based FPGAs. This paper presents a simple, fast, and very efficient synthesis algorithm to improve the delay after technology mapping. The algorithm scales to large designs and is implemented in a publicly-available technology mapper. The code is available online. Experimental results on industrial designs show that the method can improve delay after standard cell mapping by 30% with the increase in area 2.4%, or by 41% with the increase in area by 3.9%, on top of a high-effort synthesis and mapping flow. In a separate experiment, the algorithm was used as part of a complete industrial standard cell design flow, leading to improvements in area and delay after place-and-route. In yet another experiment, the algorithm was applied before FPGA mapping into 4-LUTs, resulting in 16% logic level reduction at the cost of 9% area increase on top of a high-effort mapping.","PeriodicalId":6357,"journal":{"name":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"1111 1","pages":"375-382"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2011.6105357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
Reducing delay of a digital circuit is an important topic in logic synthesis for standard cells and LUT-based FPGAs. This paper presents a simple, fast, and very efficient synthesis algorithm to improve the delay after technology mapping. The algorithm scales to large designs and is implemented in a publicly-available technology mapper. The code is available online. Experimental results on industrial designs show that the method can improve delay after standard cell mapping by 30% with the increase in area 2.4%, or by 41% with the increase in area by 3.9%, on top of a high-effort synthesis and mapping flow. In a separate experiment, the algorithm was used as part of a complete industrial standard cell design flow, leading to improvements in area and delay after place-and-route. In yet another experiment, the algorithm was applied before FPGA mapping into 4-LUTs, resulting in 16% logic level reduction at the cost of 9% area increase on top of a high-effort mapping.