On a structure of non-wandering set of an $ \Omega $-stable 3-diffeomorphism possessing a hyperbolic attractor

IF 1.1 3区 数学 Q1 MATHEMATICS
M. Barinova, O. Pochinka, E. Yakovlev
{"title":"On a structure of non-wandering set of an $ \\Omega $-stable 3-diffeomorphism possessing a hyperbolic attractor","authors":"M. Barinova, O. Pochinka, E. Yakovlev","doi":"10.3934/dcds.2023094","DOIUrl":null,"url":null,"abstract":"This paper belongs to a series of papers devoted to the study of the structure of the non-wandering set of an A-diffeomorphism. We study such set $NW(f)$ for an $\\Omega$-stable diffeomorphism $f$, given on a closed connected 3-manifold $M^3$. Namely, we prove that if all basic sets in $NW(f)$ are trivial except attractors, then every non-trivial attractor is either one-dimensional non-orientable or two-dimensional expanding.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/dcds.2023094","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper belongs to a series of papers devoted to the study of the structure of the non-wandering set of an A-diffeomorphism. We study such set $NW(f)$ for an $\Omega$-stable diffeomorphism $f$, given on a closed connected 3-manifold $M^3$. Namely, we prove that if all basic sets in $NW(f)$ are trivial except attractors, then every non-trivial attractor is either one-dimensional non-orientable or two-dimensional expanding.
具有双曲吸引子的稳定3-微分同胚的非游走集结构
本文是研究a -微分同构的非游走集结构的系列论文之一。研究了闭连通3流形M^3$上的稳定微分同态f$的集NW(f)$。即,我们证明了如果$NW(f)$中除吸引子外的所有基本集合都是平凡的,则每个非平凡吸引子要么是一维不可定向的,要么是二维展开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
175
审稿时长
6 months
期刊介绍: DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信