Variant Implementations of SCBiCG Method for Linear Equations with Complex Symmetric Matrices

Kuniyoshi Abe, S. Fujino
{"title":"Variant Implementations of SCBiCG Method for Linear Equations with Complex Symmetric Matrices","authors":"Kuniyoshi Abe, S. Fujino","doi":"10.1109/SYNASC.2015.27","DOIUrl":null,"url":null,"abstract":"SCBiCG (Bi-Conjugate Gradient method for Symmetric Complex matrices) has been proposed for solving linear equations with complex symmetric matrices, where coefficients ci need to be set by users in SCBiCG. We have had the numerical results that the residual norms of SCBiCG do not converge when the coefficients ci are real. We therefore design an efficient implementation such that the coefficients ci which are complex are given by a computation. Numerical experiments show that the residual norms of our proposed variant with the complex coefficients ci converge slightly faster than those of COCG (Conjugate Orthogonal Conjugate Gradient method) and some implementations of SCBiCG.","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"165 1","pages":"117-120"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

SCBiCG (Bi-Conjugate Gradient method for Symmetric Complex matrices) has been proposed for solving linear equations with complex symmetric matrices, where coefficients ci need to be set by users in SCBiCG. We have had the numerical results that the residual norms of SCBiCG do not converge when the coefficients ci are real. We therefore design an efficient implementation such that the coefficients ci which are complex are given by a computation. Numerical experiments show that the residual norms of our proposed variant with the complex coefficients ci converge slightly faster than those of COCG (Conjugate Orthogonal Conjugate Gradient method) and some implementations of SCBiCG.
复杂对称矩阵线性方程的SCBiCG方法的变型实现
对称复矩阵的双共轭梯度法(Bi-Conjugate Gradient method for Symmetric Complex matrices, SCBiCG)用于求解具有复杂对称矩阵的线性方程,其中系数ci需要由用户在SCBiCG中设置。数值结果表明,当系数ci为实数时,SCBiCG的残差范数不收敛。因此,我们设计了一个有效的实现,使得复系数ci可以通过计算得到。数值实验表明,该方法的残差范数收敛速度略快于共轭正交共轭梯度法和SCBiCG的一些实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信