{"title":"Existence of positive solution for the nonlinear Kirchhoff type equations in the half space with a hole","authors":"Haiyang He, Xing Yi","doi":"10.5186/AASFM.2019.4462","DOIUrl":null,"url":null,"abstract":"(1.2) −∆u + u = |u|u, x ∈ Ω, u ∈ H 0 (Ω), where 1 < p < 5. When Ω is a bounded domain, by applying the compactness of the embedding H 0 (Ω) →֒ L(Ω), 1 < p < 6, there is a positive solution of (1.2). If Ω is an unbounded domain, we can not obtain a solution for problem (1.2) by using Mountain Pass Theorem directly because the embedding H 0 (Ω) →֒ L(Ω), 1 < p < 6 is not compact. However, if Ω = R, Berestycki–Lions [3] proved that there is a radial positive solution of equation (1.2) by applying the compactness of the embedding H r (R ) →֒ L(R), 2 < p < 6, where H r (R) consists of the radially symmetric functions in H(R). By the Lions’s Concentration-Compactness Principle [13], there","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4462","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
(1.2) −∆u + u = |u|u, x ∈ Ω, u ∈ H 0 (Ω), where 1 < p < 5. When Ω is a bounded domain, by applying the compactness of the embedding H 0 (Ω) →֒ L(Ω), 1 < p < 6, there is a positive solution of (1.2). If Ω is an unbounded domain, we can not obtain a solution for problem (1.2) by using Mountain Pass Theorem directly because the embedding H 0 (Ω) →֒ L(Ω), 1 < p < 6 is not compact. However, if Ω = R, Berestycki–Lions [3] proved that there is a radial positive solution of equation (1.2) by applying the compactness of the embedding H r (R ) →֒ L(R), 2 < p < 6, where H r (R) consists of the radially symmetric functions in H(R). By the Lions’s Concentration-Compactness Principle [13], there
期刊介绍:
Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio.
AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.