Emg Acquisition and Hand Pose Classification for Bionic Hands from Randomly-Placed Sensors

Sumit A. Raurale, J. McAllister, J. M. D. Rincón
{"title":"Emg Acquisition and Hand Pose Classification for Bionic Hands from Randomly-Placed Sensors","authors":"Sumit A. Raurale, J. McAllister, J. M. D. Rincón","doi":"10.1109/ICASSP.2018.8462409","DOIUrl":null,"url":null,"abstract":"This paper presents a unique real-time motion recognition system for Electromyographic (EMG) signal acquisition and classification. It is the first approach which can classify hand poses from multi-channel EMG signals gathered from randomly placed arm sensors as accurately as current placed-sensor EMG acquisition approaches. It combines time-domain feature extraction, Linear Discriminant Analysis (LDA) feature projection and Multilayer Perceptron (MLP) classification to allow nine distinct poses to be correctly identified more than 95% of the time. This is comparable to state-of-the-art placed-sensor EMG acquisition systems. Processing times of 11.70 ms also make this a viable candidate approach for real-time EMG acquisition and processing in practical prosthesis applications.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"50 1","pages":"1105-1109"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper presents a unique real-time motion recognition system for Electromyographic (EMG) signal acquisition and classification. It is the first approach which can classify hand poses from multi-channel EMG signals gathered from randomly placed arm sensors as accurately as current placed-sensor EMG acquisition approaches. It combines time-domain feature extraction, Linear Discriminant Analysis (LDA) feature projection and Multilayer Perceptron (MLP) classification to allow nine distinct poses to be correctly identified more than 95% of the time. This is comparable to state-of-the-art placed-sensor EMG acquisition systems. Processing times of 11.70 ms also make this a viable candidate approach for real-time EMG acquisition and processing in practical prosthesis applications.
随机传感器仿生手的肌电信号采集与手部姿势分类
提出了一种独特的用于肌电信号采集和分类的实时运动识别系统。这是第一个可以从随机放置的手臂传感器收集的多通道肌电信号中准确地分类手部姿势的方法。它结合了时域特征提取、线性判别分析(LDA)特征投影和多层感知器(MLP)分类,允许超过95%的时间正确识别9种不同的姿势。这可与最先进的放置式传感器肌电信号采集系统相媲美。11.70 ms的处理时间也使其成为在实际假肢应用中实时肌电采集和处理的可行候选方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信