Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition

T. Akano, O. Fakinlede
{"title":"Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition","authors":"T. Akano, O. Fakinlede","doi":"10.5281/ZENODO.1110336","DOIUrl":null,"url":null,"abstract":"The modelling of physical phenomena, such as the\nearth's free oscillations, the vibration of strings, the interaction of\natomic particles, or the steady state flow in a bar give rise to Sturm-\nLiouville (SL) eigenvalue problems. The boundary applications of\nsome systems like the convection-diffusion equation, electromagnetic\nand heat transfer problems requires the combination of Dirichlet and\nNeumann boundary conditions. Hence, the incorporation of Robin\nboundary condition in the analyses of Sturm-Liouville problem. This\npaper deals with the computation of the eigenvalues and\neigenfunction of generalized Sturm-Liouville problems with Robin\nboundary condition using the finite element method. Numerical\nsolution of classical Sturm–Liouville problem is presented. The\nresults show an agreement with the exact solution. High results\nprecision is achieved with higher number of elements.","PeriodicalId":23764,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering","volume":"416 1","pages":"690-694"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.1110336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The modelling of physical phenomena, such as the earth's free oscillations, the vibration of strings, the interaction of atomic particles, or the steady state flow in a bar give rise to Sturm- Liouville (SL) eigenvalue problems. The boundary applications of some systems like the convection-diffusion equation, electromagnetic and heat transfer problems requires the combination of Dirichlet and Neumann boundary conditions. Hence, the incorporation of Robin boundary condition in the analyses of Sturm-Liouville problem. This paper deals with the computation of the eigenvalues and eigenfunction of generalized Sturm-Liouville problems with Robin boundary condition using the finite element method. Numerical solution of classical Sturm–Liouville problem is presented. The results show an agreement with the exact solution. High results precision is achieved with higher number of elements.
具有Robin边界条件的Sturm-Liouville问题的数值计算
物理现象的建模,如地球的自由振荡,弦的振动,原子粒子的相互作用,或酒吧的稳态流动产生Sturm-Liouville (SL)特征值问题。一些系统的边界应用,如对流扩散方程、电磁和传热问题,需要狄利克雷和诺伊曼边界条件的结合。因此,将Robinboundary条件引入Sturm-Liouville问题的分析中。本文用有限元法计算了具有Robinboundary条件的广义Sturm-Liouville问题的特征值和特征函数。给出了经典Sturm-Liouville问题的数值解。计算结果与精确解一致。较高的元素数量可以实现较高的结果精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信