Package AdvEMDpy: Algorithmic variations of empirical mode decomposition in Python

IF 1.5 Q3 BUSINESS, FINANCE
Cole van Jaarsveldt, M. Ames, Gareth W. Peters, M. Chantler
{"title":"Package AdvEMDpy: Algorithmic variations of empirical mode decomposition in Python","authors":"Cole van Jaarsveldt, M. Ames, Gareth W. Peters, M. Chantler","doi":"10.2139/ssrn.3947132","DOIUrl":null,"url":null,"abstract":"Abstract This work presents a \n$\\textsf{Python}$\n EMD package named AdvEMDpy that is both more flexible and generalises existing empirical mode decomposition (EMD) packages in \n$\\textsf{Python}$\n , \n$\\textsf{R}$\n , and \n$\\textsf{MATLAB}$\n . It is aimed specifically for use by the insurance and financial risk communities, for applications such as return modelling, claims modelling, and life insurance applications with a particular focus on mortality modelling. AdvEMDpy both expands upon the EMD options and methods available, and improves their statistical robustness and efficiency, providing a robust, usable, and reliable toolbox. Unlike many EMD packages, AdvEMDpy allows customisation by the user, to ensure that a broader class of linear, non-linear, and non-stationary time series analyses can be performed. The intrinsic mode functions (IMFs) extracted using EMD contain complex multi-frequency structures which warrant maximum algorithmic customisation for effective analysis. A major contribution of this package is the intensive treatment of the EMD edge effect which is the most ubiquitous problem in EMD and time series analysis. Various EMD techniques, of varying intricacy from numerous works, have been developed, refined, and, for the first time, compiled in AdvEMDpy. In addition to the EMD edge effect, numerous pre-processing, post-processing, detrended fluctuation analysis (localised trend estimation) techniques, stopping criteria, spline methods, discrete-time Hilbert transforms (DTHT), knot point optimisations, and other algorithmic variations have been incorporated and presented to the users of AdvEMDpy. This paper and the supplementary materials provide several real-world actuarial applications of this package for the user’s benefit.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3947132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This work presents a $\textsf{Python}$ EMD package named AdvEMDpy that is both more flexible and generalises existing empirical mode decomposition (EMD) packages in $\textsf{Python}$ , $\textsf{R}$ , and $\textsf{MATLAB}$ . It is aimed specifically for use by the insurance and financial risk communities, for applications such as return modelling, claims modelling, and life insurance applications with a particular focus on mortality modelling. AdvEMDpy both expands upon the EMD options and methods available, and improves their statistical robustness and efficiency, providing a robust, usable, and reliable toolbox. Unlike many EMD packages, AdvEMDpy allows customisation by the user, to ensure that a broader class of linear, non-linear, and non-stationary time series analyses can be performed. The intrinsic mode functions (IMFs) extracted using EMD contain complex multi-frequency structures which warrant maximum algorithmic customisation for effective analysis. A major contribution of this package is the intensive treatment of the EMD edge effect which is the most ubiquitous problem in EMD and time series analysis. Various EMD techniques, of varying intricacy from numerous works, have been developed, refined, and, for the first time, compiled in AdvEMDpy. In addition to the EMD edge effect, numerous pre-processing, post-processing, detrended fluctuation analysis (localised trend estimation) techniques, stopping criteria, spline methods, discrete-time Hilbert transforms (DTHT), knot point optimisations, and other algorithmic variations have been incorporated and presented to the users of AdvEMDpy. This paper and the supplementary materials provide several real-world actuarial applications of this package for the user’s benefit.
AdvEMDpy包:Python中经验模式分解的算法变化
本工作提出了一个名为AdvEMDpy的$\textsf{Python}$ EMD包,它既灵活又推广了$\textsf{Python}$、$\textsf{R}$和$\textsf{MATLAB}$中现有的经验模式分解(EMD)包。它的目标是专门为保险和金融风险社区使用,用于诸如回报建模、索赔建模和特别关注死亡率建模的人寿保险应用程序。AdvEMDpy扩展了可用的EMD选项和方法,并提高了它们的统计健壮性和效率,提供了一个健壮、可用和可靠的工具箱。与许多EMD包不同,AdvEMDpy允许用户定制,以确保可以执行更广泛的线性、非线性和非平稳时间序列分析。使用EMD提取的内禀模态函数(IMFs)包含复杂的多频率结构,需要最大限度地定制算法以进行有效分析。该软件包的一个主要贡献是对EMD边缘效应的强化处理,这是EMD和时间序列分析中最普遍存在的问题。在AdvEMDpy中,已经开发、改进并首次编译了各种EMD技术,这些技术的复杂程度各不相同。除了EMD边缘效应之外,AdvEMDpy还整合了许多预处理、后处理、去趋势波动分析(局部趋势估计)技术、停止准则、样条方法、离散时间希尔伯特变换(DTHT)、结点优化和其他算法变化,并向用户展示。本文和补充材料为用户的利益提供了该软件包的几个实际精算应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信