Performance analysis of Solar PV-diesel based autonomous hybrid power system using FFA and CSA optimized controller

D. Das, Ankita Sharma, Dorji Dema, Atish Modi
{"title":"Performance analysis of Solar PV-diesel based autonomous hybrid power system using FFA and CSA optimized controller","authors":"D. Das, Ankita Sharma, Dorji Dema, Atish Modi","doi":"10.1109/TENCON.2015.7373073","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative performance study of Cuckoo Search Algorithm (CSA) and Firefly Algorithm (FA) optimized proportional plus integral (PI) controller for the frequency control of solar-diesel-fuel cell-battery-aqua electrolyser based autonomous hybrid power system. In such an autonomous hybrid power system, infinite bus concept is not applicable. Therefore, with changing load, generation or both, power system frequency deviates from the nominal value. Thus, controllers are used to mitigate this frequency deviation. There are several tuning rules for obtaining the controller parameters, such as manual tuning, Ziegler Nichols tuning, Cohen-coon tuning etc., however, complexities arise during their implementation. Moreover, recent trend is to use automatic tuning. In this paper, parameters of controllers are tuned by CSA and FA under certain disturbance conditions of the hybrid power system. The simulation results reveal that performance of CSA optimized controllers are better than FA optimized controllers in terms of settling time, overshoot, oscillations.","PeriodicalId":22200,"journal":{"name":"TENCON 2015 - 2015 IEEE Region 10 Conference","volume":"28 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2015 - 2015 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2015.7373073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a comparative performance study of Cuckoo Search Algorithm (CSA) and Firefly Algorithm (FA) optimized proportional plus integral (PI) controller for the frequency control of solar-diesel-fuel cell-battery-aqua electrolyser based autonomous hybrid power system. In such an autonomous hybrid power system, infinite bus concept is not applicable. Therefore, with changing load, generation or both, power system frequency deviates from the nominal value. Thus, controllers are used to mitigate this frequency deviation. There are several tuning rules for obtaining the controller parameters, such as manual tuning, Ziegler Nichols tuning, Cohen-coon tuning etc., however, complexities arise during their implementation. Moreover, recent trend is to use automatic tuning. In this paper, parameters of controllers are tuned by CSA and FA under certain disturbance conditions of the hybrid power system. The simulation results reveal that performance of CSA optimized controllers are better than FA optimized controllers in terms of settling time, overshoot, oscillations.
基于FFA和CSA优化控制器的太阳能-柴油自主混合动力系统性能分析
针对太阳能-柴油-燃料电池-电池-电解液自主混合动力系统的频率控制问题,对布谷鸟搜索算法(CSA)和萤火虫算法(FA)优化比例加积分(PI)控制器的性能进行了对比研究。在这种自主混合动力系统中,无限母线的概念是不适用的。因此,随着负荷、发电量或两者的变化,电力系统频率偏离标称值。因此,控制器被用来减轻这种频率偏差。控制器参数的获取有多种调优规则,如手动调优、Ziegler Nichols调优、Cohen-coon调优等,但在实现过程中出现了复杂性。此外,最近的趋势是使用自动调优。本文在混合动力系统的一定扰动条件下,采用CSA和FA对控制器参数进行整定。仿真结果表明,CSA优化控制器在稳定时间、超调量、振荡等方面都优于FA优化控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信