Comparing Old and New Partial Derivative Estimates from Nonlinear Nonparametric Regressions

H. Vinod, Fred Viole
{"title":"Comparing Old and New Partial Derivative Estimates from Nonlinear Nonparametric Regressions","authors":"H. Vinod, Fred Viole","doi":"10.2139/ssrn.3681104","DOIUrl":null,"url":null,"abstract":"Partial derivatives have a special place in economics since the marginal revolution of the 1850s. We present results from multivariate partial derivative estimates using nonlinear non-parametric regressions in a finite difference method, accessible via the R-package NNS. Numerical partial derivatives are notoriously unstable, but NNS always correctly estimates their sign and comes closest to the correct magnitude compared to the coefficients in multiple linear regressions, and compared to the gradients from the popular np package for non-parametric kernel regressions.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3681104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Partial derivatives have a special place in economics since the marginal revolution of the 1850s. We present results from multivariate partial derivative estimates using nonlinear non-parametric regressions in a finite difference method, accessible via the R-package NNS. Numerical partial derivatives are notoriously unstable, but NNS always correctly estimates their sign and comes closest to the correct magnitude compared to the coefficients in multiple linear regressions, and compared to the gradients from the popular np package for non-parametric kernel regressions.
比较非线性非参数回归的新旧偏导数估计
自19世纪50年代的边际革命以来,偏导数在经济学中占有特殊地位。我们给出了用有限差分方法使用非线性非参数回归的多元偏导数估计的结果,可通过r包神经网络获得。众所周知,数值偏导数是不稳定的,但与多元线性回归中的系数相比,NNS总是正确地估计它们的符号,并且与非参数核回归中流行的np包的梯度相比,NNS总是最接近正确的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信