In Situ Confined Growth of Co3O4–TiO2/C S-Scheme Nanoparticle Heterojunction for Boosted Photocatalytic CO2 Reduction

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Haibing Liu, Kaihang Chen, Ya-Nan Feng, Zanyong Zhuang, Fei-Fei Chen* and Yan Yu*, 
{"title":"In Situ Confined Growth of Co3O4–TiO2/C S-Scheme Nanoparticle Heterojunction for Boosted Photocatalytic CO2 Reduction","authors":"Haibing Liu,&nbsp;Kaihang Chen,&nbsp;Ya-Nan Feng,&nbsp;Zanyong Zhuang,&nbsp;Fei-Fei Chen* and Yan Yu*,&nbsp;","doi":"10.1021/acs.jpcc.2c08369","DOIUrl":null,"url":null,"abstract":"<p >An S-scheme nanoparticle heterojunction of Co<sub>3</sub>O<sub>4</sub>–TiO<sub>2</sub>/C has been designed to enhance CO<sub>2</sub> adsorption and accelerate interfacial electron transfer, thereby boosting photocatalytic CO<sub>2</sub> reduction. Co<sup>2+</sup>-loaded MXene nanosheets are used as a single precursor for in situ confined growth of Co<sub>3</sub>O<sub>4</sub>–TiO<sub>2</sub>/C. The in situ confined growth of the nanoparticle heterojunction enables good particle dispersion and a small particle size, which makes the surface and active sites highly exposed and accessible for CO<sub>2</sub> molecules. In addition, p-type Co<sub>3</sub>O<sub>4</sub> and n-type TiO<sub>2</sub> build an S-scheme heterojunction. As a result, the Co<sub>3</sub>O<sub>4</sub>–TiO<sub>2</sub>/C nanoparticle heterojunction exhibits a higher specific surface area, larger CO<sub>2</sub> adsorption capacity, and faster charge transfer compared to pure Co<sub>3</sub>O<sub>4</sub> and TiO<sub>2</sub>/C. The gas generation rate over Co<sub>3</sub>O<sub>4</sub>–TiO<sub>2</sub>/C is as high as 33.21 mmol g<sup>–1</sup> h<sup>–1</sup>, which is 8.34 and 1.69 times higher than that of pure TiO<sub>2</sub>/C and Co<sub>3</sub>O<sub>4</sub>, respectively. 3 h photocatalysis affords a remarkable turnover number of 15.53 that is comparable to state-of-the-art photocatalysts.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"127 11","pages":"5289–5298"},"PeriodicalIF":3.2000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.2c08369","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

Abstract

An S-scheme nanoparticle heterojunction of Co3O4–TiO2/C has been designed to enhance CO2 adsorption and accelerate interfacial electron transfer, thereby boosting photocatalytic CO2 reduction. Co2+-loaded MXene nanosheets are used as a single precursor for in situ confined growth of Co3O4–TiO2/C. The in situ confined growth of the nanoparticle heterojunction enables good particle dispersion and a small particle size, which makes the surface and active sites highly exposed and accessible for CO2 molecules. In addition, p-type Co3O4 and n-type TiO2 build an S-scheme heterojunction. As a result, the Co3O4–TiO2/C nanoparticle heterojunction exhibits a higher specific surface area, larger CO2 adsorption capacity, and faster charge transfer compared to pure Co3O4 and TiO2/C. The gas generation rate over Co3O4–TiO2/C is as high as 33.21 mmol g–1 h–1, which is 8.34 and 1.69 times higher than that of pure TiO2/C and Co3O4, respectively. 3 h photocatalysis affords a remarkable turnover number of 15.53 that is comparable to state-of-the-art photocatalysts.

Abstract Image

Co3O4-TiO2 /C - s方案纳米颗粒异质结的原位受限生长促进光催化CO2还原
设计了一种s型Co3O4-TiO2 /C纳米颗粒异质结,以增强CO2吸附和加速界面电子转移,从而促进光催化CO2还原。负载Co2+的MXene纳米片被用作Co3O4-TiO2 /C原位受限生长的单一前驱体。纳米颗粒异质结的原位限制生长使得颗粒分散性好,颗粒尺寸小,使得表面和活性位点高度暴露,CO2分子可以接近。此外,p型Co3O4和n型TiO2构建了s型异质结。结果表明,与纯Co3O4和TiO2/C相比,Co3O4 - TiO2/C纳米颗粒异质结具有更高的比表面积、更大的CO2吸附能力和更快的电荷转移速度。Co3O4 - TiO2/C的产气率高达33.21 mmol g-1 h-1,分别是纯TiO2/C和纯Co3O4的8.34倍和1.69倍。3小时的光催化提供了15.53的显著周转率,与最先进的光催化剂相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信