Pappus’s Hexagon Theorem in Real Projective Plane

IF 1 Q1 MATHEMATICS
Roland Coghetto
{"title":"Pappus’s Hexagon Theorem in Real Projective Plane","authors":"Roland Coghetto","doi":"10.2478/forma-2021-0007","DOIUrl":null,"url":null,"abstract":"Summary. In this article we prove, using Mizar [2], [1], the Pappus’s hexagon theorem in the real projective plane: “Given one set of collinear points A, B, C, and another set of collinear points a, b, c, then the intersection points X, Y, Z of line pairs Ab and aB, Ac and aC, Bc and bC are collinear” https://en.wikipedia.org/wiki/Pappus’s_hexagon_theorem. More precisely, we prove that the structure ProjectiveSpace TOP-REAL3 [10] (where TOP-REAL3 is a metric space defined in [5]) satisfies the Pappus’s axiom defined in [11] by Wojciech Leończuk and Krzysztof Prażmowski. Eugeniusz Kusak and Wojciech Leończuk formalized the Hessenberg theorem early in the MML [9]. With this result, the real projective plane is Desarguesian. For proving the Pappus’s theorem, two different proofs are given. First, we use the techniques developed in the section “Projective Proofs of Pappus’s Theorem” in the chapter “Pappos’s Theorem: Nine proofs and three variations” [12]. Secondly, Pascal’s theorem [4] is used. In both cases, to prove some lemmas, we use Prover9 https://www.cs.unm.edu/~mccune/prover9/, the successor of the Otter prover and ott2miz by Josef Urban See its homepage https://github.com/JUrban/ott2miz [13], [8], [7]. In Coq, the Pappus’s theorem is proved as the application of Grassmann-Cayley algebra [6] and more recently in Tarski’s geometry [3].","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2021-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Summary. In this article we prove, using Mizar [2], [1], the Pappus’s hexagon theorem in the real projective plane: “Given one set of collinear points A, B, C, and another set of collinear points a, b, c, then the intersection points X, Y, Z of line pairs Ab and aB, Ac and aC, Bc and bC are collinear” https://en.wikipedia.org/wiki/Pappus’s_hexagon_theorem. More precisely, we prove that the structure ProjectiveSpace TOP-REAL3 [10] (where TOP-REAL3 is a metric space defined in [5]) satisfies the Pappus’s axiom defined in [11] by Wojciech Leończuk and Krzysztof Prażmowski. Eugeniusz Kusak and Wojciech Leończuk formalized the Hessenberg theorem early in the MML [9]. With this result, the real projective plane is Desarguesian. For proving the Pappus’s theorem, two different proofs are given. First, we use the techniques developed in the section “Projective Proofs of Pappus’s Theorem” in the chapter “Pappos’s Theorem: Nine proofs and three variations” [12]. Secondly, Pascal’s theorem [4] is used. In both cases, to prove some lemmas, we use Prover9 https://www.cs.unm.edu/~mccune/prover9/, the successor of the Otter prover and ott2miz by Josef Urban See its homepage https://github.com/JUrban/ott2miz [13], [8], [7]. In Coq, the Pappus’s theorem is proved as the application of Grassmann-Cayley algebra [6] and more recently in Tarski’s geometry [3].
实投影平面上的Pappus六边形定理
总结。本文利用Mizar[2],[1],证明了实射影平面上的Pappus六边形定理:“给定一组共线点A, B, C和另一组共线点A, B, C,则Ab和Ab, Ac和Ac, Bc和Bc的交点X, Y, Z共线”https://en.wikipedia.org/wiki/Pappus’s_hexagon_theorem。更准确地说,我们证明了结构ProjectiveSpace TOP-REAL3[10](其中TOP-REAL3是在[5]中定义的度量空间)满足由Wojciech Leończuk和Krzysztof Prażmowski在[11]中定义的Pappus公理。Eugeniusz Kusak和Wojciech Leończuk在MML早期形式化了黑森伯格定理[9]。有了这个结果,真实的投影平面是德萨格平面。为了证明帕普斯定理,给出了两种不同的证明。首先,我们使用了“Pappos定理:九种证明和三种变体”一章[12]中“Pappos定理的射影证明”一节中开发的技术。其次,运用帕斯卡定理[4]。在这两种情况下,为了证明一些引论,我们使用Prover9 https://www.cs.unm.edu/~mccune/prover9/,它是Otter证明器和Josef Urban的ott2miz的继承者,参见其主页https://github.com/JUrban/ott2miz[13],[8],[7]。在Coq中,Pappus定理被证明为Grassmann-Cayley代数的应用[6],最近在Tarski几何[3]中得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信