Hydrodynamic Analysis of Tandem Flapping Hydrofoils

V. Joshi, Ravi Chaithanya Mysa
{"title":"Hydrodynamic Analysis of Tandem Flapping Hydrofoils","authors":"V. Joshi, Ravi Chaithanya Mysa","doi":"10.1115/omae2021-62191","DOIUrl":null,"url":null,"abstract":"\n Flapping hydrofoils in tandem configuration find applications in wave gliders, dragonfly, dorsal-tail fin interaction in fishes, among others. The flapping motion consists of a combination of heaving and pitching motion. This type of motion involves complex interaction of the vortices shed from the upstream hydrofoil with the downstream hydrofoil, thus influencing the performance of the downstream hydrofoil. A two-dimensional stabilized finite element moving mesh framework is utilized for the current study. The important parameters which influence the flow interactions are the chord size ratio and the gap between the hydrofoils. The size ratio is defined as the ratio of the chord of the upstream hydrofoil to that of the downstream hydrofoil. The size ratio is varied from 0.25 to 1. The gap is varied from one chord length to 3 chord lengths of the downstream foil. The study focuses on the effect of the size ratio, gap and flapping kinematics based on sinusoidal heaving and pitching motion on the detailed flow dynamics of the tandem hydrofoils. The effect on the thrust coefficient and hydrodynamic efficiency is explored and compared with that of an isolated hydrofoil. The results obtained from the study can pave way for a better understanding with regard to engineering designs based on biomimetics.","PeriodicalId":23784,"journal":{"name":"Volume 6: Ocean Engineering","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-62191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Flapping hydrofoils in tandem configuration find applications in wave gliders, dragonfly, dorsal-tail fin interaction in fishes, among others. The flapping motion consists of a combination of heaving and pitching motion. This type of motion involves complex interaction of the vortices shed from the upstream hydrofoil with the downstream hydrofoil, thus influencing the performance of the downstream hydrofoil. A two-dimensional stabilized finite element moving mesh framework is utilized for the current study. The important parameters which influence the flow interactions are the chord size ratio and the gap between the hydrofoils. The size ratio is defined as the ratio of the chord of the upstream hydrofoil to that of the downstream hydrofoil. The size ratio is varied from 0.25 to 1. The gap is varied from one chord length to 3 chord lengths of the downstream foil. The study focuses on the effect of the size ratio, gap and flapping kinematics based on sinusoidal heaving and pitching motion on the detailed flow dynamics of the tandem hydrofoils. The effect on the thrust coefficient and hydrodynamic efficiency is explored and compared with that of an isolated hydrofoil. The results obtained from the study can pave way for a better understanding with regard to engineering designs based on biomimetics.
串联式扑翼水翼的水动力分析
在波浪滑翔机、蜻蜓、鱼的背鳍与尾鳍的相互作用等方面,脉动水翼在串联结构中都有应用。扑翼运动包括起伏运动和俯仰运动的结合。这种类型的运动涉及上游水翼与下游水翼的复杂相互作用,从而影响下游水翼的性能。本研究采用二维稳定有限元移动网格框架。影响流动相互作用的重要参数是弦长比和水翼间隙。尺寸比定义为上游水翼的弦与下游水翼的弦之比。大小比从0.25到1不等。间隙从一个和弦长度到下游箔的3个和弦长度不等。重点研究了尺寸比、间隙和基于正弦起伏和俯仰运动的扑动运动学对串列水翼详细流动动力学的影响。探讨了对推力系数和水动力效率的影响,并与孤立水翼进行了比较。研究结果可以为更好地理解基于仿生学的工程设计铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信