Gaussian Mixture Modeling for Wi-Fi fingerprintingbased indoor positioning in the presence of censored data

T. Vu, H. Le
{"title":"Gaussian Mixture Modeling for Wi-Fi fingerprintingbased indoor positioning in the presence of censored data","authors":"T. Vu, H. Le","doi":"10.31276/VJSTE.61(1).03-08","DOIUrl":null,"url":null,"abstract":"In complex indoor environments, due to the attenuation of the signal and the changing surrounding environment, the censoring and multi-component problems may be present in the observed data. Censoring refers to the fact that sensors on portable devices cannot measure Received Signal Strength Index (RSSI) values below a specific threshold, such as -100 dBm. The multi-component problem occurs when the measured data varies due to obstacles and user directions, whether the door is closed or open, etc. By accounting for these problems, this paper proposes to model the RSSI probability density distributions using the Censoring Gaussian Mixture Model (C-GMM) and develop the Expectation-Maximization (EM) algorithm to estimate the parameters of this model in the offline phase of the Wi-Fi fingerprinting based Indoor Positioning Systems (IPS). The simulation results demonstrate the effectiveness of the proposed method.","PeriodicalId":23548,"journal":{"name":"Vietnam Journal of Science, Technology and Engineering","volume":"121 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Science, Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31276/VJSTE.61(1).03-08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In complex indoor environments, due to the attenuation of the signal and the changing surrounding environment, the censoring and multi-component problems may be present in the observed data. Censoring refers to the fact that sensors on portable devices cannot measure Received Signal Strength Index (RSSI) values below a specific threshold, such as -100 dBm. The multi-component problem occurs when the measured data varies due to obstacles and user directions, whether the door is closed or open, etc. By accounting for these problems, this paper proposes to model the RSSI probability density distributions using the Censoring Gaussian Mixture Model (C-GMM) and develop the Expectation-Maximization (EM) algorithm to estimate the parameters of this model in the offline phase of the Wi-Fi fingerprinting based Indoor Positioning Systems (IPS). The simulation results demonstrate the effectiveness of the proposed method.
存在截尾数据时基于Wi-Fi指纹的室内定位高斯混合建模
在复杂的室内环境中,由于信号的衰减和周围环境的变化,观测数据可能存在滤波和多分量问题。截波是指便携式设备上的传感器无法测量低于特定阈值的接收信号强度指数(RSSI)值,例如- 100dbm。当测量数据因障碍物和用户方向、门是关闭还是打开等原因而发生变化时,就会出现多分量问题。考虑到这些问题,本文提出了采用滤波高斯混合模型(cencing Gaussian Mixture model, C-GMM)对RSSI概率密度分布进行建模,并开发了期望最大化(Expectation-Maximization, EM)算法来估计基于Wi-Fi指纹识别的室内定位系统(IPS)离线阶段该模型的参数。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信