K-SPIN: Efficiently Processing Spatial Keyword Queries on Road Networks : (Extended Abstract)

Tenindra Abeywickrama, M. A. Cheema, Arijit Khan
{"title":"K-SPIN: Efficiently Processing Spatial Keyword Queries on Road Networks : (Extended Abstract)","authors":"Tenindra Abeywickrama, M. A. Cheema, Arijit Khan","doi":"10.1109/ICDE48307.2020.00237","DOIUrl":null,"url":null,"abstract":"Given the prevalence and volume of local search queries, today’s search engines are required to find results by both spatial proximity and textual relevance at high query throughput. Existing techniques to answer such spatial keyword queries employ a keyword aggregation strategy that suffers from certain drawbacks when applied to road networks. Instead, we propose the K-SPIN framework, which uses an alternative keyword separation strategy that is more suitable on road networks. While this strategy was previously thought to entail prohibitive pre-processing costs, we further propose novel techniques to make our framework viable and even light-weight. Thorough experimentation shows that K-SPIN outperforms the state-of-the-art by up to two orders of magnitude on a wide range of settings and real-world datasets.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"69 2 1","pages":"2036-2037"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given the prevalence and volume of local search queries, today’s search engines are required to find results by both spatial proximity and textual relevance at high query throughput. Existing techniques to answer such spatial keyword queries employ a keyword aggregation strategy that suffers from certain drawbacks when applied to road networks. Instead, we propose the K-SPIN framework, which uses an alternative keyword separation strategy that is more suitable on road networks. While this strategy was previously thought to entail prohibitive pre-processing costs, we further propose novel techniques to make our framework viable and even light-weight. Thorough experimentation shows that K-SPIN outperforms the state-of-the-art by up to two orders of magnitude on a wide range of settings and real-world datasets.
K-SPIN:有效处理道路网络空间关键字查询(扩展摘要)
考虑到本地搜索查询的普遍性和数量,今天的搜索引擎需要在高查询吞吐量下通过空间接近性和文本相关性来查找结果。现有的回答这种空间关键字查询的技术采用关键字聚合策略,当应用于道路网络时存在某些缺点。相反,我们提出了K-SPIN框架,它使用了一种更适合道路网络的替代关键字分离策略。虽然这种策略以前被认为需要高昂的预处理成本,但我们进一步提出了新的技术,使我们的框架可行,甚至是轻量级的。彻底的实验表明,在广泛的设置和现实世界的数据集上,K-SPIN比最先进的技术高出两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信