Stability of regular vortex polygons in Bose-Einstein condensate

IF 0.3 Q4 MATHEMATICS
A. Kilin, E. Artemova
{"title":"Stability of regular vortex polygons in Bose-Einstein condensate","authors":"A. Kilin, E. Artemova","doi":"10.35634/2226-3594-2020-56-02","DOIUrl":null,"url":null,"abstract":"We consider the problem of the stability of rotating regular vortex N-gons (Thomson configurations) in a Bose-Einstein condensate in a harmonic trap. The dependence of the rotation velocity ω of the Thomson configuration around the center of the trap is obtained as a function of the number of vortices N and the radius of the configuration R. The analysis of the stability of motion of such configurations in the linear approximation is carried out. For N⩽6, regions of orbital stability of configurations in the parameter space are constructed. It is shown that vortex N-gons for N > 6 are unstable for any parameters of the system.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":"124 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/2226-3594-2020-56-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We consider the problem of the stability of rotating regular vortex N-gons (Thomson configurations) in a Bose-Einstein condensate in a harmonic trap. The dependence of the rotation velocity ω of the Thomson configuration around the center of the trap is obtained as a function of the number of vortices N and the radius of the configuration R. The analysis of the stability of motion of such configurations in the linear approximation is carried out. For N⩽6, regions of orbital stability of configurations in the parameter space are constructed. It is shown that vortex N-gons for N > 6 are unstable for any parameters of the system.
玻色-爱因斯坦凝聚中规则涡旋多边形的稳定性
研究了谐波阱中玻色-爱因斯坦凝聚中旋转规则涡旋n -子(汤姆逊组态)的稳定性问题。得到了汤姆逊构型在陷阱中心周围的旋转速度ω与涡数N和构型半径r的关系,并在线性近似下分析了这类构型的运动稳定性。对于N≤6,构造了构型在参数空间中的轨道稳定性区域。结果表明,当N > 6时,对系统的任何参数都是不稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信