Adaptive robust precision motion control of linear motors with high frequency flexible modes

Zheng Chen, B. Yao, Qingfeng Wang
{"title":"Adaptive robust precision motion control of linear motors with high frequency flexible modes","authors":"Zheng Chen, B. Yao, Qingfeng Wang","doi":"10.1109/AMC.2012.6197108","DOIUrl":null,"url":null,"abstract":"This paper studies precision motion control of linear motors in the presence of parameter variations, disturbances and various significant nonlinearity effects. An adaptive robust control (ARC) algorithm with integrated compensation of major nonlinearities ranging from Coulomb friction and cogging force to the nonlinear electromagnetic field effect is developed. High frequency structural flexible modes and dynamics in linear motors, which are neglected in the previous researches, are explicitly identified experimentally and their effects are carefully examined. With the knowledge of those high frequency dynamics, theoretical analysis is subsequently conducted to generate a set of practically useful guidelines on the tuning of controller gains in maximizing the achievable performance in practice. Comparative experiments of the propose ARC control law with different controller gains are carried out to illustrate the usefulness of the generated guidelines. In addition, to further push the achievable control performance, explicit compensation of the known high-frequency flexible modes and dynamics using pole/zero cancelation is also investigated, and its effectiveness is evaluated through comparative experimental results as well.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"8 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2012.6197108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper studies precision motion control of linear motors in the presence of parameter variations, disturbances and various significant nonlinearity effects. An adaptive robust control (ARC) algorithm with integrated compensation of major nonlinearities ranging from Coulomb friction and cogging force to the nonlinear electromagnetic field effect is developed. High frequency structural flexible modes and dynamics in linear motors, which are neglected in the previous researches, are explicitly identified experimentally and their effects are carefully examined. With the knowledge of those high frequency dynamics, theoretical analysis is subsequently conducted to generate a set of practically useful guidelines on the tuning of controller gains in maximizing the achievable performance in practice. Comparative experiments of the propose ARC control law with different controller gains are carried out to illustrate the usefulness of the generated guidelines. In addition, to further push the achievable control performance, explicit compensation of the known high-frequency flexible modes and dynamics using pole/zero cancelation is also investigated, and its effectiveness is evaluated through comparative experimental results as well.
高频柔性模式直线电机的自适应鲁棒精确运动控制
本文研究了存在参数变化、扰动和各种显著非线性效应的直线电机的精密运动控制问题。提出了一种综合补偿库仑摩擦、齿槽力和非线性电磁场效应等主要非线性的自适应鲁棒控制算法。本文从实验上明确地识别了直线电机的高频结构柔性模态和动力学特性,并对其影响进行了细致的研究。利用这些高频动力学的知识,随后进行理论分析,以产生一套实际有用的指导方针,以调整控制器增益,在实践中最大限度地提高可实现的性能。采用不同的控制器增益对所提出的电弧控制律进行了对比实验,以说明所生成准则的有效性。此外,为了进一步提高可实现的控制性能,还研究了利用极零抵消对已知高频柔性模态和动力学进行显式补偿的方法,并通过对比实验结果对其有效性进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信