A Simple and Fast Algorithm for Computing the N-th Term of a Linearly Recurrent Sequence

A. Bostan, R. Mori
{"title":"A Simple and Fast Algorithm for Computing the N-th Term of a Linearly Recurrent Sequence","authors":"A. Bostan, R. Mori","doi":"10.1137/1.9781611976496.14","DOIUrl":null,"url":null,"abstract":"We present a simple and fast algorithm for computing the $N$-th term of a given linearly recurrent sequence. Our new algorithm uses $O(\\mathsf{M}(d) \\log N)$ arithmetic operations, where $d$ is the order of the recurrence, and $\\mathsf{M}(d)$ denotes the number of arithmetic operations for computing the product of two polynomials of degree $d$. The state-of-the-art algorithm, due to Charles Fiduccia (1985), has the same arithmetic complexity up to a constant factor. Our algorithm is simpler, faster and obtained by a totally different method. We also discuss several algorithmic applications, notably to polynomial modular exponentiation, powering of matrices and high-order lifting.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"2013 1","pages":"118-132"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611976496.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a simple and fast algorithm for computing the $N$-th term of a given linearly recurrent sequence. Our new algorithm uses $O(\mathsf{M}(d) \log N)$ arithmetic operations, where $d$ is the order of the recurrence, and $\mathsf{M}(d)$ denotes the number of arithmetic operations for computing the product of two polynomials of degree $d$. The state-of-the-art algorithm, due to Charles Fiduccia (1985), has the same arithmetic complexity up to a constant factor. Our algorithm is simpler, faster and obtained by a totally different method. We also discuss several algorithmic applications, notably to polynomial modular exponentiation, powering of matrices and high-order lifting.
计算线性循环序列第n项的一种简单快速算法
我们提出了一种简单快速的算法来计算给定线性循环序列的第N项。我们的新算法使用$O(\mathsf{M}(d) \log N)$算术运算,其中$d$是递归的阶数,$\mathsf{M}(d)$表示计算两个阶为$d$的多项式的乘积的算术运算次数。Charles Fiduccia(1985)提出的最先进的算法具有相同的算术复杂度,直到一个常数因子。我们的算法更简单,更快,并且是通过完全不同的方法得到的。我们还讨论了几种算法的应用,特别是多项式模幂,矩阵幂和高阶提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信