Yongliang Yuan, Jianli Ren, Zhenxi Wang, Xiaokai Mu
{"title":"DYNAMIC ANALYSIS OF THE RIGID-FLEXIBLE EXCAVATOR MECHANISM BASED ON VIRTUAL PROTOTYPE","authors":"Yongliang Yuan, Jianli Ren, Zhenxi Wang, Xiaokai Mu","doi":"10.22190/fume211028008y","DOIUrl":null,"url":null,"abstract":"In this paper, the excavator’s dynamic performance is considered together with the study of its trajectory, stress distribution and vibration. Many researchers have focused their study on the kinematics principle while a few others focused their work on dynamic performance, especially the vibration analysis. Previous studies of dynamic performance analysis have ignored the vibration effects. To address these challenges, the rigid-flexible coupling model of the excavator attachment is established and carried out based on virtual prototyping in this study. The dipper handle, the boom and the hoist rope are modeled as a flexible multi-body system for structural strength. The other components are modeled as a rigid multi-body system to catch the dynamic characteristics. The results show that the number of flexible bodies has little effect on the excavation trajectory. The maximum stress determined for the dipper handle and the boom are 96.45 MPa and 212.24 MPa, respectively. The dynamic performance of the excavator is greatly influenced by the clearance and is characterized by two phases: as the clearance decreases, the dynamic response decreases at first and then increases.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"2 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22190/fume211028008y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, the excavator’s dynamic performance is considered together with the study of its trajectory, stress distribution and vibration. Many researchers have focused their study on the kinematics principle while a few others focused their work on dynamic performance, especially the vibration analysis. Previous studies of dynamic performance analysis have ignored the vibration effects. To address these challenges, the rigid-flexible coupling model of the excavator attachment is established and carried out based on virtual prototyping in this study. The dipper handle, the boom and the hoist rope are modeled as a flexible multi-body system for structural strength. The other components are modeled as a rigid multi-body system to catch the dynamic characteristics. The results show that the number of flexible bodies has little effect on the excavation trajectory. The maximum stress determined for the dipper handle and the boom are 96.45 MPa and 212.24 MPa, respectively. The dynamic performance of the excavator is greatly influenced by the clearance and is characterized by two phases: as the clearance decreases, the dynamic response decreases at first and then increases.
期刊介绍:
Facta Universitatis, Series: Mechanical Engineering (FU Mech Eng) is an open-access, peer-reviewed international journal published by the University of Niš in the Republic of Serbia. It publishes high-quality, refereed papers three times a year, encompassing original theoretical and/or practice-oriented research as well as extended versions of previously published conference papers. The journal's scope covers the entire spectrum of Mechanical Engineering. Papers undergo rigorous peer review to ensure originality, relevance, and readability, maintaining high publication standards while offering a timely, comprehensive, and balanced review process.