The Candida rugosa lipase adsorbed onto titania as nano biocatalyst with improved thermostability and reuse potential in aqueous and organic media

Q2 Chemical Engineering
Lidija T. Izrael Živković , Ljiljana S. Živković , Vladimir P. Beškoski , Kristina R. Gopčević , Bojan M. Jokić , Dragoslav S. Radosavljević , Ivanka M. Karadžić
{"title":"The Candida rugosa lipase adsorbed onto titania as nano biocatalyst with improved thermostability and reuse potential in aqueous and organic media","authors":"Lidija T. Izrael Živković ,&nbsp;Ljiljana S. Živković ,&nbsp;Vladimir P. Beškoski ,&nbsp;Kristina R. Gopčević ,&nbsp;Bojan M. Jokić ,&nbsp;Dragoslav S. Radosavljević ,&nbsp;Ivanka M. Karadžić","doi":"10.1016/j.molcatb.2017.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>The immobilization of <em>Candida rugosa</em> lipase by adsorption was performed onto commercial titania powder (Degussa P25). The change of titania particles surface was diagnosed by means of FTIR and FESEM analysis, as well as by shift of zeta potential value towards that of lipase. A detailed study of the effect of immobilization on enzyme kinetic, temperature stability, as well as on potential for its reuse in aqueous organic media was undertaken. Immobilization of lipase altered enzyme affinity toward substrates with different length of carbon chain in hydrolytic reaction. The Vmax value decreased 2–8-fold, where major constraint was registered for the ester containing the longest carbon chain. Thermostability of lipase improved more than 7-fold at 60<!--> <!-->°C. Significant potential for reuse in water solutions was also found after immobilization. In cyclohexane immobilized lipase catalyzed synthesis of amyl octanoate by ping-pong bi–bi mechanism with inhibition by amyl alcohol. Obtained kinetic constants were Vmax<!--> <!-->=<!--> <!-->26.4<!--> <!-->μmol<!--> <!-->min<sup>−1</sup>,<!--> <!-->K<sub>Ac</sub> <!-->=<!--> <!-->0.52<!--> <!-->mol/L,<!--> <!-->K<sub>Al</sub> <!-->=<!--> <!-->0.2<!--> <!-->mol/L and K<sub>i,Al</sub> <!-->=<!--> <!-->0.644<!--> <!-->mol/L. Esterification activity remained 60% after 5 reuse cycles in cyclohexane indicating moderate reuse stability.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"133 ","pages":"Pages S533-S542"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2017.06.001","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117717300516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 6

Abstract

The immobilization of Candida rugosa lipase by adsorption was performed onto commercial titania powder (Degussa P25). The change of titania particles surface was diagnosed by means of FTIR and FESEM analysis, as well as by shift of zeta potential value towards that of lipase. A detailed study of the effect of immobilization on enzyme kinetic, temperature stability, as well as on potential for its reuse in aqueous organic media was undertaken. Immobilization of lipase altered enzyme affinity toward substrates with different length of carbon chain in hydrolytic reaction. The Vmax value decreased 2–8-fold, where major constraint was registered for the ester containing the longest carbon chain. Thermostability of lipase improved more than 7-fold at 60 °C. Significant potential for reuse in water solutions was also found after immobilization. In cyclohexane immobilized lipase catalyzed synthesis of amyl octanoate by ping-pong bi–bi mechanism with inhibition by amyl alcohol. Obtained kinetic constants were Vmax = 26.4 μmol min−1, KAc = 0.52 mol/L, KAl = 0.2 mol/L and Ki,Al = 0.644 mol/L. Esterification activity remained 60% after 5 reuse cycles in cyclohexane indicating moderate reuse stability.

Abstract Image

念珠菌脂肪酶作为纳米生物催化剂吸附在二氧化钛上,在水和有机介质中具有更好的热稳定性和重用潜力
在商用二氧化钛粉(Degussa P25)上吸附固定化假丝酵母脂肪酶。通过FTIR和FESEM分析以及zeta电位值向脂肪酶电位值的偏移来诊断氧化钛颗粒表面的变化。研究了固定化对酶的动力学、温度稳定性及其在有机水介质中的再利用潜力的影响。脂肪酶的固定化改变了酶对不同碳链长度底物的亲和力。Vmax值降低了2 - 8倍,其中主要约束是为含有最长碳链的酯。脂肪酶在60℃时的热稳定性提高了7倍以上。在固定后,还发现了在水溶液中重复使用的显著潜力。环己烷固定化脂肪酶在戊醇抑制下用乒乓- bi-bi机理催化合成辛酸戊酯。得到的动力学常数Vmax = 26.4 μmol min−1,KAc = 0.52 mol/L, KAl = 0.2 mol/L, Ki,Al = 0.644 mol/L。环己烷重复使用5次后,酯化活性仍为60%,表明其具有中等的重复使用稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Catalysis B-enzymatic
Journal of Molecular Catalysis B-enzymatic 生物-生化与分子生物学
CiteScore
2.58
自引率
0.00%
发文量
0
审稿时长
3.4 months
期刊介绍: Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation. Papers should report novel and significant advances in one or more of the following topics; Applied and fundamental studies of enzymes used for biocatalysis; Industrial applications of enzymatic processes, e.g. in fine chemical synthesis; Chemo-, regio- and enantioselective transformations; Screening for biocatalysts; Integration of biocatalytic and chemical steps in organic syntheses; Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies; Enzyme immobilization and stabilization, particularly in non-conventional media; Bioprocess engineering aspects, e.g. membrane bioreactors; Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification; Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity; Biomimetic studies related to enzymatic transformations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信