{"title":"A new hypothesis about the mechanism of magnetic-domain formation","authors":"F. Branda, G. Luciani, A. Costantini","doi":"10.1080/13642810208222947","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes a mechanism of formation of the magnetic domains on cooling a ferromagnetic material from a higher temperature than the Curie temperature. It is derived from the well-known theory of crystallization in an amorphous material through a two-step mechanism of nucleation and crystal growth. Following this approach it is shown that the domain structure should depend on the free-energy change ΔG per mole of magnetic moment aligning in the same direction. A method to avoid calculation of ΔG is shown. This approach was successfully applied to explain the differences between the domain structures of the annealed and the as-quenched samples of the amorphous alloy Fe62.5Co6Ni7.5Zr6Cu1Nb2B15. Moreover, it gives an explanation for recent findings on the magnetic microstructure of high-permeability materials.","PeriodicalId":20016,"journal":{"name":"Philosophical Magazine Part B","volume":"26 1","pages":"1859 - 1865"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13642810208222947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper proposes a mechanism of formation of the magnetic domains on cooling a ferromagnetic material from a higher temperature than the Curie temperature. It is derived from the well-known theory of crystallization in an amorphous material through a two-step mechanism of nucleation and crystal growth. Following this approach it is shown that the domain structure should depend on the free-energy change ΔG per mole of magnetic moment aligning in the same direction. A method to avoid calculation of ΔG is shown. This approach was successfully applied to explain the differences between the domain structures of the annealed and the as-quenched samples of the amorphous alloy Fe62.5Co6Ni7.5Zr6Cu1Nb2B15. Moreover, it gives an explanation for recent findings on the magnetic microstructure of high-permeability materials.