Di Ma, Q. Jing, Yue‐Ping Xu, Alex J. Cannon, T. Dong, M. Semenov, B. Qian
{"title":"Using ensemble-mean climate scenarios for future crop yield projections: a stochastic weather generator approach","authors":"Di Ma, Q. Jing, Yue‐Ping Xu, Alex J. Cannon, T. Dong, M. Semenov, B. Qian","doi":"10.3354/CR01646","DOIUrl":null,"url":null,"abstract":"Using climate scenarios from only 1 or a small number of global climate models (GCMs) in climate change impact studies may lead to biased assessment due to large uncertainty in climate projections. Ensemble means in impact projections derived from a multi-GCM ensemble are often used as best estimates to reduce bias. However, it is often time consuming to run process-based models (e.g. hydrological and crop models) in climate change impact studies using numerous climate scenarios. It would be interesting to investigate if using a reduced number of climate scenarios could lead to a reasonable estimate of the ensemble mean. In this study, we generated a single ensemble-mean climate scenario (En-WG scenario) using ensemble means of the change factors derived from 20 GCMs included in CMIP5 to perturb the parameters in a weather generator, LARS-WG, for selected locations across Canada. We used En-WG scenarios to drive crop growth models in DSSAT ver. 4.7 to simulate crop yields for canola and spring wheat under RCP4.5 and RCP8.5 emission scenarios. We evaluated the potential of using the En-WG scenarios to simulate crop yields by comparing them with crop yields simulated with the LARS-WG generated climate scenarios based on each of the 20 GCMs (WG scenarios). Our results showed that simulated crop yields using the En-WG scenarios were often close to the ensemble means of simulated crop yields using the 20 WG scenarios with a high probability of outperforming simulations based on a randomly selected GCM. Further studies are required, as the results of the proposed ap proach may be influenced by selected crop types, crop models, weather generators, and GCM ensembles.","PeriodicalId":10438,"journal":{"name":"Climate Research","volume":"32 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3354/CR01646","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 5
Abstract
Using climate scenarios from only 1 or a small number of global climate models (GCMs) in climate change impact studies may lead to biased assessment due to large uncertainty in climate projections. Ensemble means in impact projections derived from a multi-GCM ensemble are often used as best estimates to reduce bias. However, it is often time consuming to run process-based models (e.g. hydrological and crop models) in climate change impact studies using numerous climate scenarios. It would be interesting to investigate if using a reduced number of climate scenarios could lead to a reasonable estimate of the ensemble mean. In this study, we generated a single ensemble-mean climate scenario (En-WG scenario) using ensemble means of the change factors derived from 20 GCMs included in CMIP5 to perturb the parameters in a weather generator, LARS-WG, for selected locations across Canada. We used En-WG scenarios to drive crop growth models in DSSAT ver. 4.7 to simulate crop yields for canola and spring wheat under RCP4.5 and RCP8.5 emission scenarios. We evaluated the potential of using the En-WG scenarios to simulate crop yields by comparing them with crop yields simulated with the LARS-WG generated climate scenarios based on each of the 20 GCMs (WG scenarios). Our results showed that simulated crop yields using the En-WG scenarios were often close to the ensemble means of simulated crop yields using the 20 WG scenarios with a high probability of outperforming simulations based on a randomly selected GCM. Further studies are required, as the results of the proposed ap proach may be influenced by selected crop types, crop models, weather generators, and GCM ensembles.
期刊介绍:
Basic and applied research devoted to all aspects of climate – past, present and future. Investigation of the reciprocal influences between climate and organisms (including climate effects on individuals, populations, ecological communities and entire ecosystems), as well as between climate and human societies. CR invites high-quality Research Articles, Reviews, Notes and Comments/Reply Comments (see Clim Res 20:187), CR SPECIALS and Opinion Pieces. For details see the Guidelines for Authors. Papers may be concerned with:
-Interactions of climate with organisms, populations, ecosystems, and human societies
-Short- and long-term changes in climatic elements, such as humidity and precipitation, temperature, wind velocity and storms, radiation, carbon dioxide, trace gases, ozone, UV radiation
-Human reactions to climate change; health, morbidity and mortality; clothing and climate; indoor climate management
-Climate effects on biotic diversity. Paleoecology, species abundance and extinction, natural resources and water levels
-Historical case studies, including paleoecology and paleoclimatology
-Analysis of extreme climatic events, their physicochemical properties and their time–space dynamics. Climatic hazards
-Land-surface climatology. Soil degradation, deforestation, desertification
-Assessment and implementation of adaptations and response options
-Applications of climate models and modelled future climate scenarios. Methodology in model development and application