Artificial Intelligence Based Fault Location in a Distribution System

P. Ray, D. Mishra
{"title":"Artificial Intelligence Based Fault Location in a Distribution System","authors":"P. Ray, D. Mishra","doi":"10.1109/ICIT.2014.10","DOIUrl":null,"url":null,"abstract":"A hybrid technique for fault distance estimation in a distribution line with wind farm is presented in this paper. Here, one cycle of post fault current samples are taken for fault location from the distributed generation end. The collected samples are then decomposed by wavelet transform and thereafter six statistical features are extracted from the reconstructed detail coefficients of the current signal. Further best features are selected from the total feature set by forward feature selection method. These selected features are then fed as input to the artificial neural network for fault location. In the proposed method, the simulation conditions for the test pattern are completely different from the train one in order to make it robust. Simulation result shows that the proposed hybrid fault location method gives high accuracy for the distribution system.","PeriodicalId":6486,"journal":{"name":"2014 17th International Conference on Computer and Information Technology (ICCIT)","volume":"73 1","pages":"18-23"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 17th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2014.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

A hybrid technique for fault distance estimation in a distribution line with wind farm is presented in this paper. Here, one cycle of post fault current samples are taken for fault location from the distributed generation end. The collected samples are then decomposed by wavelet transform and thereafter six statistical features are extracted from the reconstructed detail coefficients of the current signal. Further best features are selected from the total feature set by forward feature selection method. These selected features are then fed as input to the artificial neural network for fault location. In the proposed method, the simulation conditions for the test pattern are completely different from the train one in order to make it robust. Simulation result shows that the proposed hybrid fault location method gives high accuracy for the distribution system.
基于人工智能的配电系统故障定位
提出了一种用于带风电场配电线路故障距离估计的混合方法。在这里,从分布式发电端采集一个周期的故障后电流样本进行故障定位。然后对采集到的样本进行小波变换分解,从重构的电流信号细节系数中提取6个统计特征。通过前向特征选择方法从总特征集中进一步选择最佳特征。然后将这些选择的特征作为输入输入到人工神经网络中进行故障定位。在该方法中,测试模式的仿真条件与训练模式完全不同,以保证其鲁棒性。仿真结果表明,所提出的混合故障定位方法对配电系统具有较高的定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信