Langlin Zheng, Xue-ping Gan, Chaoqiang Liu, K. Zhou
{"title":"Improving properties of h-BN/GH4169 self-lubricating composites prepared using nickel coated h-BN powders","authors":"Langlin Zheng, Xue-ping Gan, Chaoqiang Liu, K. Zhou","doi":"10.1080/09276440.2023.2189684","DOIUrl":null,"url":null,"abstract":"ABSTRACT The service conditions of high temperature and heavy load of aero-engine require high-temperature self-lubricating composites with high strength, low wear and long life. Hence, the high-level objective of this study is to regulate the interface between the substrate and hexagonal boron nitride (h-BN) lubricant in GH4169 nickel-based high-temperature self-lubricating composites to improve the interfacial bonding strength and the overall performance. Electroless plating method was adopted to coat nickel on h-BN, and the dense high-temperature self-lubricating composites were fabricated through hot-pressing sintering. The effects of nickel coating on h-BN on the microstructure, mechanical properties and high-temperature tribological behaviors of composites were analyzed in detail, and the lubrication mechanism was also elucidated. The results illustrate the Ni@h-BN/GH4169 composites with addition of chemically modified lubricant particles have excellent mechanical properties and lubrication and wear reduction properties, compared to h-BN/GH4169 composites. This is mainly due to the introduction of nickel coating contributed to the distribution uniformity of h-BN in the matrix, and the wettability between h-BN and the substrate together with interfacial bonding strength were enhanced as well. This work provides an insight to overcome the challenges facing the technology when using GH4169 nickel-based self-lubricating composites in manufacturing of mechanical components in aerospace.","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":"4 1","pages":"1099 - 1117"},"PeriodicalIF":2.1000,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2189684","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The service conditions of high temperature and heavy load of aero-engine require high-temperature self-lubricating composites with high strength, low wear and long life. Hence, the high-level objective of this study is to regulate the interface between the substrate and hexagonal boron nitride (h-BN) lubricant in GH4169 nickel-based high-temperature self-lubricating composites to improve the interfacial bonding strength and the overall performance. Electroless plating method was adopted to coat nickel on h-BN, and the dense high-temperature self-lubricating composites were fabricated through hot-pressing sintering. The effects of nickel coating on h-BN on the microstructure, mechanical properties and high-temperature tribological behaviors of composites were analyzed in detail, and the lubrication mechanism was also elucidated. The results illustrate the Ni@h-BN/GH4169 composites with addition of chemically modified lubricant particles have excellent mechanical properties and lubrication and wear reduction properties, compared to h-BN/GH4169 composites. This is mainly due to the introduction of nickel coating contributed to the distribution uniformity of h-BN in the matrix, and the wettability between h-BN and the substrate together with interfacial bonding strength were enhanced as well. This work provides an insight to overcome the challenges facing the technology when using GH4169 nickel-based self-lubricating composites in manufacturing of mechanical components in aerospace.
期刊介绍:
Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories.
Composite Interfaces covers a wide range of topics including - but not restricted to:
-surface treatment of reinforcing fibers and fillers-
effect of interface structure on mechanical properties, physical properties, curing and rheology-
coupling agents-
synthesis of matrices designed to promote adhesion-
molecular and atomic characterization of interfaces-
interfacial morphology-
dynamic mechanical study of interphases-
interfacial compatibilization-
adsorption-
tribology-
composites with organic, inorganic and metallic materials-
composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields