{"title":"QUANTUM TRAJECTORIES IN RANDOM ENVIRONMENT: THE STATISTICAL MODEL FOR A HEAT BATH","authors":"I. Nechita, C. Pellegrini","doi":"10.1142/S1793744209000109","DOIUrl":null,"url":null,"abstract":"In this paper, we derive the stochastic master equations corresponding to the statistical model of a heat bath. These stochastic differential equations are obtained as continuous time limits of discrete models of quantum repeated measurements. Physically, they describe the evolution of a small system in contact with a heat bath undergoing continuous measurement. The equations obtained in the present work are qualitatively different from the ones derived in [6], where the Gibbs model of heat bath has been studied. It is shown that the statistical model of a heat bath has a clear physical interpretation in terms of emissions and absorptions of photons. Our approach yields models of random environment and unravelings of stochastic master equations. The equations are rigorously obtained as solutions of martingale problems using the convergence of Markov generators.","PeriodicalId":52130,"journal":{"name":"Confluentes Mathematici","volume":"36 1","pages":"249-289"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Confluentes Mathematici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793744209000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, we derive the stochastic master equations corresponding to the statistical model of a heat bath. These stochastic differential equations are obtained as continuous time limits of discrete models of quantum repeated measurements. Physically, they describe the evolution of a small system in contact with a heat bath undergoing continuous measurement. The equations obtained in the present work are qualitatively different from the ones derived in [6], where the Gibbs model of heat bath has been studied. It is shown that the statistical model of a heat bath has a clear physical interpretation in terms of emissions and absorptions of photons. Our approach yields models of random environment and unravelings of stochastic master equations. The equations are rigorously obtained as solutions of martingale problems using the convergence of Markov generators.
期刊介绍:
Confluentes Mathematici is a mathematical research journal. Since its creation in 2009 by the Institut Camille Jordan UMR 5208 and the Unité de Mathématiques Pures et Appliquées UMR 5669 of the Université de Lyon, it reflects the wish of the mathematical community of Lyon—Saint-Étienne to participate in the new forms of scientific edittion. The journal is electronic only, fully open acces and without author charges. The journal aims to publish high quality mathematical research articles in English, French or German. All domains of Mathematics (pure and applied) and Mathematical Physics will be considered, as well as the History of Mathematics. Confluentes Mathematici also publishes survey articles. Authors are asked to pay particular attention to the expository style of their article, in order to be understood by all the communities concerned.